精英家教网 > 高中数学 > 题目详情
17.一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、…第五志愿的顺序填写志愿表.若A专业不能作为第一、第二志愿,则他共有1800种不同的填法(用数字作答).

分析 根据题意,分2步进行分析:①、在除A之外的6个专业中,任选2个,作为第一、二志愿,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、由于A专业不能作为第一、第二志愿,
需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有A62=30种填法,
②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,
有A53=60种填法,
则该学生有30×60=1800种不同的填法;
故答案为:1800.

点评 本题考查分步计数原理的应用,注意专业A不一定要填在5个志愿中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在锐角△ABC中,sinA=sinBsinC,则tanB+2tanC的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2
(ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),若a1=1,则S20=2056.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有(  )
A.${A}_{9}^{9}$种B.${A}_{12}^{8}$种C.8${A}_{8}^{8}$种D.2${A}_{8}^{8}$${A}_{4}^{4}$种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x∈(-$\frac{π}{2}$,0),cosx=$\frac{3}{5}$,则tan2x=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线x-y=0的倾斜角为(  )
A.1B.$\frac{π}{4}$C.-1D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:
(1)sin15°;
(2)sin35°cos5°-cos35°sin5°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=$\frac{2}{π}$${∫}_{0}^{2}$$\sqrt{4x-{x}^{2}}$dx,实数x,y满足$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-2y+2≥0}\\{2x-y-4≤0}\end{array}\right.$,则z=x2+y2+ay的取值范围为(  )
A.[$\frac{25}{4}$,8]B.[$\frac{31}{5}$,$\frac{212}{9}$]C.[8,$\frac{212}{9}$]D.[$\frac{31}{5}$,8]

查看答案和解析>>

同步练习册答案