分析 (1)求出f(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;
(2)(i)由导数与极值的关系知可转化为方程f′(x)=lnx-ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,或转化为函数g(x)=$\frac{lnx}{x}$与函数y=a的图象在(0,+∞)上有两个不同交点;或转化为g(x)=lnx-ax有两个不同零点,从而讨论求解;
(ii)e1+λ<x1•x2λ可化为1+λ<lnx1+λlnx2,结合方程的根知1+λ<ax1+λax2=a(x1+λx2),从而可得a>$\frac{1+λ}{{x}_{1}+{λx}_{2}}$;而a=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$,从而可得ln $\frac{{x}_{1}}{{x}_{2}}$$\frac{(1+λ){(x}_{1}{-x}_{2})}{{x}_{1}+{λx}_{2}}$<恒成立;再令t=$\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),从而可得不等式lnt<$\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立,再令h(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,从而利用导数化恒成立问题为最值问题即可.
解答 解:(1)a=0时,f(x)=xlnx-x,函数的定义域是(0,+∞),
f(x)=lnx,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
故函数在(0,1)递减,在(1,+∞)递增,
故函数的极小值是f(1)=-1;
(2)(i)由题意知,函数f(x)的定义域为(0,+∞),
方程f′(x)=0在(0,+∞)有两个不同根;
即方程lnx-ax=0在(0,+∞)有两个不同根;
(解法一)转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,
如右图.![]()
可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.
令切点A(x0,lnx0),
故k=y′|x=x0=$\frac{1}{{x}_{0}}$,又k=$\frac{l{nx}_{0}}{{x}_{0}}$,
故 $\frac{1}{{x}_{0}}$=$\frac{l{nx}_{0}}{{x}_{0}}$,解得,x0=e,
故k=$\frac{1}{e}$,故0<a<$\frac{1}{e}$.
(解法二)转化为函数g(x)=$\frac{lnx}{x}$与函数y=a的图象在(0,+∞)上有两个不同交点
又g′(x)=$\frac{1-lnx}{{x}^{2}}$,
即0<x<e时,g′(x)>0,x>e时,g′(x)<0,
故g(x)在(0,e)上单调增,在(e,+∞)上单调减.
故g(x)极大=g(e)=$\frac{1}{e}$;
又g(x)有且只有一个零点是1,且在x→0时,g(x)→-∞,在在x→+∞时,g(x)→0,
故g(x)的草图如右图,![]()
可见,要想函数g(x)=$\frac{lnx}{x}$与函数y=a的图象在(0,+∞)上有两个不同交点,
只须0<a<$\frac{1}{e}$.
(解法三)令g(x)=lnx-ax,从而转化为函数g(x)有两个不同零点,
而g′(x)=$\frac{1}{x}$-ax=$\frac{1-ax}{x}$(x>0),
若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,
此时g(x)不可能有两个不同零点.
若a>0,在0<x<$\frac{1}{a}$时,g′(x)>0,在x>$\frac{1}{a}$时,g′(x)<0,
所以g(x)在(0,$\frac{1}{a}$)上单调增,在($\frac{1}{a}$,+∞)上单调减,从而g(x)极大值=g($\frac{1}{a}$)=ln$\frac{1}{a}$-1,
又因为在x→0时,g(x)→-∞,在在x→+∞时,g(x)→-∞,
于是只须:g(x)极大>0,即ln$\frac{1}{a}$-1>0,所以0<a<$\frac{1}{e}$.
综上所述,0<a<$\frac{1}{e}$.
(ii)因为e1+λ<x1•x2λ等价于1+λ<lnx1+λlnx2.
由(i)可知x1,x2分别是方程lnx-ax=0的两个根,
即lnx1=ax1,lnx2=ax2
所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,
所以原式等价于a>$\frac{1+λ}{{x}_{1}+{λx}_{2}}$,
又由lnx1=ax1,lnx2=ax2作差得,ln $\frac{{x}_{1}}{{x}_{2}}$=a(x1-x2),
即a=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$,所以原式等价于 $\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$>$\frac{1+λ}{{x}_{1}+{λx}_{2}}$,
因为0<x1<x2,原式恒成立,即ln $\frac{{x}_{1}}{{x}_{2}}$<$\frac{(1+λ){(x}_{1}{-x}_{2})}{{x}_{1}+{λx}_{2}}$恒成立,
令t=$\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),
则不等式lnt<$\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立.
令h(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,
又h′(t)=$\frac{(t-1)(t{-λ}^{2})}{{t(t+λ)}^{2}}$,
当λ2≥1时,可见t∈(0,1)时,h′(t)>0,
所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.
当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,
所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,
所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.
综上所述,若不等式e1+λ<x1•x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.
点评 本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,属于综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2n}{2n+1}$ | B. | $\frac{2n}{n+1}$ | C. | $\frac{n+2}{n+1}$ | D. | $\frac{n}{2n+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{13}$ | B. | $-\frac{12}{13}$ | C. | $-\frac{5}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com