精英家教网 > 高中数学 > 题目详情
10.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的线性回归方程为(  )
A.${\;}_{y}^{∧}$=x-1B.${\;}_{y}^{∧}$=x+2C.${\;}_{y}^{∧}$=2x+1D.${\;}_{y}^{∧}$=x+1

分析 根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.

解答 解:∵$\overline{x}$=$\frac{1}{4}$×(1+2+3+4)=2.5,$\overline{y}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
∴这组数据的样本中心点是(2.5,3.5)
把样本中心点代入四个选项中,只有y=x+1成立,
故选:D.

点评 本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(α)=$\frac{{sin({π-α})cosα}}{{sin({\frac{π}{2}-α})}}+\frac{{sin({π+α})cos({2π-α})}}{{cosαtan({-α})}}$
(1)化简f(α);
(2)若f(α)=$\frac{1}{5},-\frac{π}{2}$<α<0,求sinα•cosα,sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设a,b都不是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l过定点(1,0),且倾斜角为$\frac{π}{3}$,则直线l的一般式方程为$\sqrt{3}$x-y-$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),若a1=1,则S20=2056.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前6次都未成功,后4次都成功的概率为(1-p)6•p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x∈(-$\frac{π}{2}$,0),cosx=$\frac{3}{5}$,则tan2x=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在数列{an}中,已知a1=2,anan-1=2an-1(a≥2,n∈N*),记数列{an}的前n项之积为Tn,若Tn=2017,则n的值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数$\frac{a-i}{2+i}$的实部与虚部相等,则实数a的值为(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案