分析 (1)利用诱导公式化简三角函数式f(α)的解析式,可得结果.
(2)利用同角三角函数的基本关系求得 sinα•cosα 的值,结合 sinα与cosα 的符号,可得(sinα-cosα)2的值,可得sinα-cosα的值.
解答 解:(1)f(α)=$\frac{{sin({π-α})cosα}}{{sin({\frac{π}{2}-α})}}+\frac{{sin({π+α})cos({2π-α})}}{{cosαtan({-α})}}$=$\frac{sinα•cosα}{cosα}$+$\frac{-sinα•cosα}{-sinα}$=sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$).
(2)由$f(α)=sinα+cosα=\frac{1}{5}$,平方可得${sin^2}α+2sinαcosα+{cos^2}α=\frac{1}{25}$,
即$2sinα•cosα=-\frac{24}{25}$,∴sinα•cosα=-$\frac{12}{25}$,∵(sinα-cosα)2=1-2sinαcosα=$\frac{49}{25}$,
又$-\frac{π}{2}<α<0$,所以sinα<0,cosα>0,所以sinα-cosα<0,∴sinα-cosα=-$\frac{7}{5}$.
点评 本题主要考查应用诱导公式、同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -1 | C. | -3 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${\;}_{y}^{∧}$=x-1 | B. | ${\;}_{y}^{∧}$=x+2 | C. | ${\;}_{y}^{∧}$=2x+1 | D. | ${\;}_{y}^{∧}$=x+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com