精英家教网 > 高中数学 > 题目详情
9.若点(x,y)位于曲线y=|x|与y=1所围成的封闭区域内(含边界),则2x-y的最小值为-3.

分析 作出条件对应平面区域,设z=2x-y,利用目标函数的几何意义,进行求最值即可.

解答 解:设z=2x-y得y=2x-z,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=2x-z,
由图象可知当直线y=2x-z,过点A时,
直线y=2x-z的截距最大,此时z最小,
由$\left\{\begin{array}{l}{y=1}\\{y=-x}\end{array}\right.$,解得A(-1,1),
代入目标函数z=2x-y=-2-1=-3,
∴目标函数z=2x-y的最小值是-3.
故答案为:-3.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,所表示的平面区域内运动,则z=4x-y的取值范围为[-1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(α)=$\frac{{sin({π-α})cosα}}{{sin({\frac{π}{2}-α})}}+\frac{{sin({π+α})cos({2π-α})}}{{cosαtan({-α})}}$
(1)化简f(α);
(2)若f(α)=$\frac{1}{5},-\frac{π}{2}$<α<0,求sinα•cosα,sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x+1)n(n≥2,n∈N*)..
(1)当n=3时,求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}$的值;
(2)设bn=$\frac{a_n}{{{2^{n-2}}}},{T_n}={b_2}+{b_3}+…+{b_n}$.
①求bn的表达式;
②使用数学归纳法证明:当n≥2时,Tn=$\frac{{n({n+1})({n-1})}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数据x1,x2,…,x8的方差为3,则数据2x1,2x2,..,2x8的方差为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(3cosx,-2cosx),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设a,b都不是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l过定点(1,0),且倾斜角为$\frac{π}{3}$,则直线l的一般式方程为$\sqrt{3}$x-y-$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在数列{an}中,已知a1=2,anan-1=2an-1(a≥2,n∈N*),记数列{an}的前n项之积为Tn,若Tn=2017,则n的值为2016.

查看答案和解析>>

同步练习册答案