精英家教网 > 高中数学 > 题目详情
11.在锐角△ABC中,角A,B,C所对的边分别是a,b,c,且$\sqrt{3}$csinA-acosC+b-2c=0.
(1)求角A的大小;
(2)求cosB+cosC的范围.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知可得$\sqrt{3}sinCsinA+cosAsinC-2sinC=0$,结合sinC≠0,可得$sin(A+\frac{π}{6})=1$,结合A的范围可求A的值.
(2)由三角形内角和定理,三角函数恒等变换的应用可求cosB+cosC=sin(C+$\frac{π}{6}$),结合范围$\frac{π}{6}<C<\frac{π}{2}$,利用正弦函数的性质可求范围.

解答 解:(1)因为$\sqrt{3}csinA-acosC+b-2c=0$,
所以$\sqrt{3}sinCsinA-sinAcosC+sinB-2sinC=0$,
因为sinB=sin(A+C)=sinAcosC+cosAsinC,
所以$\sqrt{3}sinCsinA+cosAsinC-2sinC=0$,
又sinC≠0,
所以$\sqrt{3}sinA+cosA=2$,可得:$sin(A+\frac{π}{6})=1$,
因为△ABC是锐角三角形,
所以,$A+\frac{π}{6}=\frac{π}{2}$,$A=\frac{π}{3}$,
(2)因为$A=\frac{π}{3}$,
所以$B+C=\frac{2π}{3}$,$cosB+cosC=cos({\frac{2π}{3}-C})+cosC=sin({C+\frac{π}{6}})$,
因为△ABC是锐角三角形,
所以$\frac{π}{6}<C<\frac{π}{2}$,cosB+cosC的范围$({\frac{{\sqrt{3}}}{2},1})$.

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,三角形内角和定理,正弦函数的性质在解三角形中的应用,考查了转化思想和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.为了增强消防安全意识,某中学对全体学生做了依稀消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
 优秀非优秀总计
男生153550
女生304070
总计4575120
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
 P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010
k01.323  2.072 2.706 3.841 5.024 6.635 
(1)试判断能否认为消防知识的测试成绩优秀与否与性别有关;
(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组,先从6人中随机抽取2人到校外宣传,求到校外宣传的同学中有男同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x-2)2+(y-3)2=16及直线l:(m+2)x+(3m+1)y=15m+10(m∈R).
(1)证明:不论m取什么实数,直线l与圆C恒相交;
(2)当直线l被圆C截得的弦长的最短时,求此时直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某项体育比赛对前期不同年龄段参赛选手的完成情况进行统计,得到如下2×2的列联表,已知从30~40岁段中随机选出一人,其恰好完成的概率为$\frac{5}{9}$.
成功(人)失败(人)合计
20~30(岁)204060
30~40(岁)50
合计70
(1)完成2×2的列联表;
(2)有多大点把握认为完成比赛与年龄是否有关?
附:下面的临界值表及公式供参考:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A,B,C所对的边分别是a,b,c,若$a=1,b=\sqrt{3},C={30^0}$,则c=1,△ABC的面积S=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)的导函数为f'(x),且满足关系式$f(x)=\frac{1}{x}+3xf'(1)$,则f'(2)的值等于$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=(  )
A.{1}B.{1,4}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在△OAB,点P在边AB上,且AP:PB=5:3,则$\overrightarrow{OP}$=(  )
A.$\frac{5}{8}$$\overrightarrow{OB}$+$\frac{3}{8}$$\overrightarrow{OA}$B.$\frac{5}{8}$$\overrightarrow{OA}$+$\frac{3}{8}$$\overrightarrow{OB}$C.$\frac{5}{8}$$\overrightarrow{OB}$-$\frac{3}{8}$$\overrightarrow{OA}$D.$\frac{5}{8}$$\overrightarrow{OA}$-$\frac{3}{8}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+bx(x>0)在x=3处取得极值0.
(1)求函数f(x)的解析式;
(2)已知A(x1,y1),B(x2,y2)是函数y=f(x),x∈[1,3]图象上两个不同的点,且$|{{x_1}-{x_2}}|=\sqrt{3}$,图象在A(x1,y1),B(x2,y2)两点处的切线的斜率分别为k1,k2,证明:$\sqrt{|{{k_1}{k_2}}|}≤3({1-\frac{m}{4}})$.

查看答案和解析>>

同步练习册答案