精英家教网 > 高中数学 > 题目详情
18.在正项数列{an}中,a1=2,且点($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直线x-$\sqrt{2}$y=0上,则前n项和Sn等于(  )
A.2n-1B.2n+1-2C.${2^{\frac{n}{2}}}-\sqrt{2}$D.${2^{\frac{n-2}{2}}}-\sqrt{2}$

分析 把点的坐标代入直线方程,求出an与an+1的关系,判断数列的特征,即可求解前n项和.

解答 解:因为点($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直线x-$\sqrt{2}$y=0上,
所以$\sqrt{a_n}$-$\sqrt{2}$×$\sqrt{{a_{n-1}}}$=0,即an=2an-1
所以数列{an}是首项为2,公比为2的等比数列.
它的前n项和为:Sn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2.
故选B.

点评 本题考查等比数列的前n项和的求法,等比数列的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,则f(f(f(-2016)))=π2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=-4x+2x+1-1,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(  )
A.(0,4]B.(-∞,4]C.(-4,0]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,5a2-5c2=5b2-8bc,边b,c是关于x的方程:x2-(12tanA)x+25cosA=0的两个根(b<c),D为△ABC内任一点,点D到三边的距离和为d.
(1)求边a,b,c;
(2)求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某市旅游节需在A大学和B大学中分别招募8名和12名志愿者,这20名志愿者的身高(单位:cm)绘制出如图所示的茎叶图.若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有B大学的“高个子”才能担任“兼职导游”.
(1)用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,现从这5人中选2人,那么至少有1人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职导游”的人数,试写出随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:函数f(x)=$\frac{1}{3}$mx3+x2+x在区间(1,2)上单调递增;命题q:函数g(x)=4ln(x+1)+$\frac{1}{2}$x2-(m-1)x的图象上任意一点处的切线斜率恒大于1,若“p∨(¬q)”为真命题,“(¬p)∨q”也为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输出的S=183,则判断框内应填入的条件是(  )
A.k>7?B.k>6?C.k>5?D.k>4?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}中,a4=20,a6=12,则{an}的前9项和S9=144.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若y=f(x)是定义在R上的函数,f(x+2)=-f(x),当0≤x≤2时,f(x)=4x+$\frac{3}{x}$,则f(5)=7.

查看答案和解析>>

同步练习册答案