精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn,求通项an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.
(1)an=2·3n1(2)an
(1)n=1时,a1=S1=2.
n≥2时,an=Sn-Sn1=2·3n1.
当n=1时,an=1符合上式.
∴an=2·3n1.
(2)n=1时,a1=S1=5.
n≥2时,an=Sn-Sn1=2n+2.
当n=1时a1=5不符合上式.
∴an
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

公比为的等比数列的各项都是正数,且,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且有a1=2,Sn=2an-2.
(1)求数列an的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于(  )
A.-6(1-3-10)B.(1-310)
C.3(1-3-10)D.3(1+3-10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn=n2+1,数列{bn}是首项为1,公比为b的等比数列.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等比数列{an}中,S3=7,S6=63,则an=________.

查看答案和解析>>

同步练习册答案