精英家教网 > 高中数学 > 题目详情
从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是(  )
A、590B、570
C、360D、210
考点:计数原理的应用
专题:排列组合
分析:不同的组队方案:选派5人组成一个支教小组,要求其中语文、数学和英语老师都至少有1人,方法共有6类,他们分别是:3名语文、1名数学和1名英语;1名语文、3名数学和1名英语,…,在每一类中都用分步计数原理解答.
解答: 解:直接法:3名语文、1名数学和1名英语,有C33C41C51=20种,
1名语文、3名数学和1名英语1名,有C31C43C51=60种,
1名语文、1名数学和1名英语3名,有C31C41C53=120种,
2名语文、2名数学和1名英语1名,有C32C42C51=90种,
1名语文、2名数学和2名英语1名,有C31C42C52=180种,
2名语文、1名数学和2名英语1名,有C32C41C52=120种,
共计20+60+120+90+180+120=590种
故选:A.
点评:本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<
π
2
)的图象过点(0,
3
),则f(x)的图象的一个对称中心是(  )
A、(-
π
3
,0)
B、(-
π
6
,0)
C、(
π
6
,0)
D、(
π
4
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是R上的减函数,且函数y=f(x-1)的图象关于点A(1,0)对称.设动点M(x,y),若实数x,y满足不等式 f(x2-8y+24)+f(y2-6x)≥0恒成立,则
OA
OM
的取值范围是(  )
A、(-∞,+∞)
B、[-1,1]
C、[2,4]
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a2n=n-an,a2n+1=an+1,则a100=(  )
A、30B、31C、32D、33

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,其中a1=1,a7=13
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和,当不等式λTn<n+8•(-1)n(n∈N*)恒成立时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名,按年龄所在的区间分组:第1组:[20,25);第2组:[25,30);第3组:[30,35);第4组:[35,40);第5组:[40,45].得到的频率分布直方图如下图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在满足条件(1)时,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象如图所示,则函数f(x)有可能是(  )
A、xsin(
1
x2
B、xcos(
1
x2
C、x2sin(
1
x2
D、x2cos(
1
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+
y2
3
=1,直线l:
x=-3+
3
t
y=2
3
+t
(t为参数).
(Ⅰ)写出椭圆C的参数方程及直线l的普通方程;
(Ⅱ)设 A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,则输出的S的值为(  )
A、11B、19C、26D、57

查看答案和解析>>

同步练习册答案