精英家教网 > 高中数学 > 题目详情
已知直线,有下面四个命题:
(1);                 (2);  
(3);                 (4)
其中正确的命题是(   )
A.(1)与(2)B.(1)与(3)C.(2)与(4)D.(3)与(4)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在几何体中,四边形为矩形,平面
(1)当时,求证:平面平面
(2)若所成角为45°,求几何体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是正三棱柱(底面为正三角形,侧棱垂直于底面),它的底面边长和侧棱长都是为侧棱的中点,为底面一边的中点.
(1)求异面直线所成的角;
(2)求证:
(3)求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。
(I)证明:PQ//平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求平面ACD与平面ABE所成锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面
(3)求证:直线平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—
CD—A的平面角为,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;


 
  (3)若,求实数的值,使得直线SM与平面SCD所成角为

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥的侧棱长为,侧棱与底面所成的角为,则该棱锥的体积为(   )
A.3B.6 C.9D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


A.平面B.
C.异面直线角为60°D.⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若将下面的展开图恢复成正方体,则的度数为         .

查看答案和解析>>

同步练习册答案