精英家教网 > 高中数学 > 题目详情
给定函数①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是(  )
A.①②B.②③
C.③④D.①④
B
显然幂函数y=及指数型函数y=2x+1在(0,1)上单调递增,对于y=(x+1)可看作是y=u,
u=x+1的复合函数,由复合函数的单调性知y=(x+1)在(0,1)上递减,对函数y=|x-1|,其图象是偶函数y=|x|的图象向右平移一个单位得到,y=|x|在(-1,0)上递减,则y=|x-1|在(0,1)上递减.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设函数的定义域为,若存在常数,使对一切
实数均成立,则称为“有界泛函”.现在给出如下个函数:
; ②;③;④
上的奇函数,且满足对一切,均有
其中属于“有界泛函”的函数是       (填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=2x2-2ax+3在区间[-1,1]上最小值记为g(a).
(1)求g(a)的函数表达式;
(2)求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断函数f(x)=ex在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,若f(x)在(0,+∞)上单调递增,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数在上单调递增的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)满足:对任意的x1<x2≤-1,[f(x2)-f(x1)](x2-x1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为(  )
A.f(-2)<f(-)<f(-1)
B.f(-2)>f(-)>f(-1)
C.f(-2)>f(-1)>f(-)
D.f(-)>f(-2)>f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)= (  ).
A.在上递增
B.在上递增,在上递减
C.在上递减
D.在上递减,在上递增

查看答案和解析>>

同步练习册答案