分析 (Ⅰ)由已知可得a-c=2,b=$2\sqrt{3}$,结合隐含条件求得a,则椭圆方程可求;
(Ⅱ)由(Ⅰ)知A(-4,0),B(4,0).设P(x1,y1),Q(x2,y2),可得${k}_{PA}•{k}_{1}=\frac{12-\frac{3}{4}{{x}_{1}}^{2}}{{{x}_{1}}^{2}-16}=-\frac{3}{4}$,再由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,可得kQA•k2=-1,由A,P,Q三点共线,可得kAP=kQA,kPA•k2=-1.进一步求得$\frac{{k}_{1}}{{k}_{2}}=-\frac{3}{4}$.
解答 解:(Ⅰ)由已知可得a-c=2,b=$2\sqrt{3}$,
又b2=a2-c2=12,解得a=4.
故所求椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;
(Ⅱ)由(Ⅰ)知A(-4,0),B(4,0).
设P(x1,y1),Q(x2,y2),
∴${k}_{PA}•{k}_{1}=\frac{{y}_{1}}{{x}_{1}+4}•\frac{{y}_{1}}{{x}_{1}-4}=\frac{{{y}_{1}}^{2}}{{x}_{1}-16}$.
∵P(x1,y1)在椭圆C上,
∴$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{12}=1$,即${{y}_{1}}^{2}=12-\frac{3}{4}{{x}_{1}}^{2}$.
∴${k}_{PA}•{k}_{1}=\frac{12-\frac{3}{4}{{x}_{1}}^{2}}{{{x}_{1}}^{2}-16}=-\frac{3}{4}$.…①
由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,
∴QA⊥QB.
∴kQA•k2=-1.
由A,P,Q三点共线,可得kAP=kQA,
∴kPA•k2=-1.…②
由①、②两式得$\frac{{k}_{1}}{{k}_{2}}=\frac{3}{4}$.
点评 本题考查椭圆方程的求法,考查了椭圆的简单性质,考查直线与圆、椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{17}$ | B. | 7 | C. | 2$\sqrt{17}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (2,+∞) | C. | ($\sqrt{5}$,3) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | -3 | C. | 4 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要非充分条件 | B. | 非充分非必要条件 | ||
| C. | 充分必要条件 | D. | 充分非必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com