精英家教网 > 高中数学 > 题目详情
某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为(  )
A、
4
3
π
B、3π
C、π
D、
3
2
π
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图可知:该四面体是正方体的一个内接正四面体.此四面体的外接球的半径为正方体的对角线长=
3
.利用球的表面积计算公式即可得出.
解答: 解:由三视图可知:该四面体是正方体的一个内接正四面体.
∴此四面体的外接球的直径为正方体的对角线长=
3

∴此四面体的外接球的表面积为表面积=4π×(
3
2
)2
=3π.
故选:B.
点评:本题考查了三棱锥的三视图、正方体与外接球的性质、球的表面积的计算公式,考查了推理能力与空间想象能力、计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=-
1
3
x3+2ax2-3a2x+b(0<a<1)
(1)求函数f(x)的单调区间和极值;
(2)当x=
1
2
时,f(x)有极小值
1
3
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2000年世界人口为60亿,目前世界人口增长率约为1.84%,如果这种趋势保持不变,求哪一年人口将长到120亿?(lg1.0184=0.0079,lg2=0.3010)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,则满足b=2a,A=25°的△ABC的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+1(a≠0),当x=1时有极值.
(1)求a、b的关系式;
(2)若当x=1时,函数f(x)有极大值3,且经过点P(0,17)作曲线y=f(x)的切线l,求切线l的方程;
(3)设函数g(x)=f(x)-2x2(a>0)在区间(2,3)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
1
0
1-x2
dx,tanβ=3,则tan(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y2=|x|+1的部分图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(α-
π
3
)=
1
3
,则sin(2α-
π
6
)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

截至2014年11月27目,我国机动车驾驶人数量突破3亿大关,年均增长超过两千万.为了解我地区驾驶预考人员的现状,选择A,B,C三个驾校进行调查.参加各驾校科目一预考人数如下:
驾校A驾校B驾校C
人数150200250
若用分层抽样的方法从三个驾校随机抽取24人进行分析,他们的成绩如下:
879791929399978692989294
878999929992937670909264
(1)求三个驾校分别应抽多少人?
(2)补全下面的茎叶图,并求样本的众数和极差;
(3)在对数据进一步分析时,满足|x-96.5|≤4的预考成绩,称为具有M特性.在样本中随机抽取一人,
求此人的预考成绩具有M特性的概率.

查看答案和解析>>

同步练习册答案