精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,则满足b=2a,A=25°的△ABC的个数是(  )
A、0B、1C、2D、3
考点:正弦定理
专题:解三角形
分析:根据题意和正弦值的大小确定bsinA<a<b,从而判断出△ABC的个数.
解答: 解:由题意得,b=2a,A=25°,
则h=bsinA=bsin25°<bsin30°=
1
2
b=a,
所以bsinA<a<b,
则满足条件的三角形的个数为2,
故选:C.
点评:本题考查了正弦定理及应用,以及三角形的解的个数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,角A、B、C所对应的边分别为a,b,c,若
a-c
sinB-sinC
=
b
sinA+sinB

(1)求角A;
(2)若函数f(x)=cos2(x+A)-sin2(x-A)+
1
2
cosx,x∈[A,π]
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-x3+ax2+bx+c(a>0),在x=1处取得极大值,
(1)若曲线y=f(x)在点(
1
3
,f(
1
3
))处切线的斜率为
4
3
,求a,b;
(2)若曲线y=f(x)存在斜率为
4
3
的切线.求a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得对?x∈(-∞,0],都有f(x)≥c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=-8x的焦点为F1,准线与x轴的交点为F2,直线l:x-y+4=0,以F1、F2为焦点的椭圆C过直线l上一点.
(1)求长轴最短时椭圆C的方程;
(2)在(1)中的椭圆上存在四点M、N、P、Q满足:
PF2
F2Q
MF2
F2N
PF2
F2M
,求四边形PMQN的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率为
1
2
,直线x=2被椭圆E截得的弦长为6,设F的椭圆E的右焦点,A为椭圆E的左顶点.
(1)求椭圆E的方程;
(2)求过点A、F,并且与椭圆的E右准线l相切的圆的方程;
(3)若M为椭圆E的右准线l上一点,连结AM交椭圆于点P,求
PM
AP
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,
1
1+2
1
1+2+3
,…,
1
1+2+3+…+n
的前n项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为(  )
A、
4
3
π
B、3π
C、π
D、
3
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C对应的边分别是a,b,c,若a,b,c是公差为正数的等差数列,且sinB=
7
4
,则cosA-cosC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+6x≤0
x2-2x+2x>0

(1)求不等式f(x)>5的解集;
(2)若方程f(x)-
m2
2
=0有三个不同实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案