精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,sinθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角θ=$\frac{π}{4}$.

分析 利用向量平行的坐标关系得到关于θ的方程,求锐角即可.

解答 解:因为$\overrightarrow{a}$∥$\overrightarrow{b}$,所以sin$θ=\frac{\sqrt{2}}{2}$,所以锐角$θ=\frac{π}{4}$;
故答案为:$\frac{π}{4}$.

点评 本题考查了平面向量平行的坐标关系;熟记向量平行的性质是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知正实数a,b满足ab=1,则2a+b的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由y=sinx,x=0,x=$\frac{π}{2}$,y=0所围成的图形的面积可以写成${∫}_{0}^{\frac{π}{2}}sinxdx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某市为了解今年高中毕业生的身体素质状况,从本市某校高中毕业班中抽取一个班进行实心球测试,成绩在8米及以上的为合格.把所得数据整理后,分成六组得到频率分布直方图的一部分(如图).已知前五个小组的频率分别为0.06.0.10,0.14,0.28,0.30.第六小组的频数是6.
(1)求这次测试合格的人数;
(2)用分层抽样方法在第5、6组的学生中抽取容量为7的一个样本,将该样本看作一个总体,从中抽取2人,求恰有一人在第六组的概率.
(3)经过多次测试发现,甲的成绩在8~10米之间,乙的成绩在9~10米之间现两人各投一次,求甲投得比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知二项式(x-$\frac{1}{x}$)6,则展开式中x2项的系数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos(3x+φ)的图象关于原点成中心对称,则φ等于(  )
A.-$\frac{π}{2}$B.2kπ-$\frac{π}{2}$(k∈Z)C.kπ(k∈Z)D.kπ+$\frac{π}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用反证法证明命题“若a2+b2=0,则a,b全为0”,其反设为a,b不全为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{17}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足z(1-2i)=3+4i复数z的共轭复数所对应的点在第(  )象限.
A.B.C.D.

查看答案和解析>>

同步练习册答案