| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{{\sqrt{10}}}{4}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{17}{18}$ |
分析 取A1C1中点E,连结B1E,则B1E⊥A1C1,B1E⊥AA1,从而B1E⊥平面ACC1A1,进而∠B1AE是AB1与侧面ACC1A1所成角,由此能出AB1与侧面ACC1A1所成角的正弦值.
解答 解:取A1C1中点E,连结B1E,
∵正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,
∴B1E⊥A1C1,B1E⊥AA1,
又A1C1∩AA1=A1,∴B1E⊥平面ACC1A1,
∴∠B1AE是AB1与侧面ACC1A1所成角,
设正三棱柱ABC-A1B1C1的侧棱长与底面边长为2,
则BE1=$\sqrt{4-1}=\sqrt{3}$,AE=$\sqrt{4+1}$=$\sqrt{5}$,
∴sin∠B1AE=$\frac{{B}_{1}E}{A{B}_{1}}$=$\frac{\sqrt{3}}{2\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
∴AB1与侧面ACC1A1所成角的正弦值为$\frac{\sqrt{6}}{4}$.
故选:A.
点评 本题考查线面角的正弦值的求法,涉及到空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 250 | B. | 300 | C. | 360 | D. | 390 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline{x_甲}$<$\overline{x_乙}$,s甲<s乙 | B. | $\overline{x_甲}$<$\overline{x_乙}$,s甲>s乙 | ||
| C. | $\overline{x_甲}$>$\overline{x_乙}$,s甲<s乙 | D. | $\overline{x_甲}$>$\overline{x_乙}$,s甲>s乙 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x<0 | B. | x<0或x>4 | C. | |x-1|>1 | D. | |x-2|>3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com