精英家教网 > 高中数学 > 题目详情
7.若抛物线:y2=2px(p>0)上有一点M,其横坐标为9,它到焦点的距离为10,求抛物线方程和M点的坐标.

分析 依题意,知抛物线y2=-2px(p>0)的准线方程为x=$\frac{p}{2}$,设M(9,m),利用抛物线的定义,将它到焦点的距离转化为它到其焦点的距离,从而可得答案.

解答 解:设M(9,m),
∵点M到焦点的距离为10,
∴由抛物线的定义知:9+$\frac{p}{2}$=10,
解得:p=2,
∴抛物线方程为:y2=4x;
将M(9,m)点的坐标代入抛物线方程得:m2=4×9=36,
∴m=±6,
∴M点的坐标为(9,-6)或(9,6).

点评 本题考查抛物线的标准方程,着重考查抛物线的概念,考查转化思想、分类讨论思想与运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.有4个不同的小球,4个不同的盒子,现需把球全部放进盒子里,
(1)没有空盒子的方法共有多少种?
(2)可以有空盒子的方法共有多少种?
(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,若h(x)=$\frac{f(x)+2}{g(x)}$,则h′(5)=$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,则$\frac{a_6}{b_6}$的值为(  )
A.$\frac{19}{41}$B.$\frac{3}{7}$C.$\frac{7}{15}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知i是虚数单位,复数z=(m2-2m-8)+(m2-3m-4)i,当m取何实数时,z是:
(1)实数  
(2)虚数  
(3)纯虚数   
(4)零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|-|x-2|.
(1)作出函数y=f(x)的图象;
(2)解不等式|2x-1|-|x-2|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若变量x,y满足的约束条件$\left\{{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}}\right.$,则Z=2x+3y的最小值5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在正方体ABCD-A′B′C′D′中,点P为线段AD′的中点,则异面直线CP与BA′所成角θ的值为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过过点P(2,1).
(1)求椭圆M的标准方程;
(2)设点A(x1,y1),B(x2,y2)是椭圆M上异于顶点的任意两点,直线OA,OB的斜率分别为k1,k2,且k1k2=-$\frac{1}{4}$.
①求x12+x22的值;
②设点B关于x轴的对称点为C(点C,A不重合),试求直线AC的斜率.

查看答案和解析>>

同步练习册答案