精英家教网 > 高中数学 > 题目详情
19.若变量x,y满足的约束条件$\left\{{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}}\right.$,则Z=2x+3y的最小值5.

分析 首先画出可行域,根据目标函数的几何意义求最小值.

解答 解:约束条件对应的可行域如图:
Z=2x+3y变形为y=$-\frac{2}{3}$x+$\frac{z}{3}$,
由其几何意义当直线经过A点时,z最小,
由$\left\{\begin{array}{l}{x-3y=-2}\\{x=1}\end{array}\right.$得A(1,1),
所以Z=2x+3y的最小值为2×1+3×1=5;
故答案为:5.

点评 本题考查了简单线性规划问题;由约束条件求目标函数的最值,一般首先画出可行域,根据目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若sin4x<cos4x,则x的取值范围是(  )
A.$\left\{{\left.x\right|2kπ-\frac{3}{4}π<x<2kπ+\frac{π}{4},k∈Z}\right\}$B.$\left\{{\left.x\right|2kπ+\frac{π}{4}<x<2kπ+\frac{5}{4}π,k∈Z}\right\}$
C.$\left\{{\left.x\right|kπ-\frac{π}{4}<x<kπ+\frac{π}{4},k∈Z}\right\}$D.$\left\{{\left.x\right|kπ+\frac{π}{4}<x<kπ+\frac{3}{4}π,k∈Z}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=tan($\frac{π}{2}$x+$\frac{π}{3}$)
(1)求f(x)的最小正周期.
(2)求f(x)的定义域和单调区间.
(3)求方程f(x)=$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若抛物线:y2=2px(p>0)上有一点M,其横坐标为9,它到焦点的距离为10,求抛物线方程和M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px(p>0),过点Q(4,0)作动直线l交抛物线于A,B两点,且OA⊥OB(O为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)若对点P(t,0),恒有∠APQ=∠BPQ,求实数t的值及△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P(B|A)=$\frac{1}{2}$,P(AB)=$\frac{3}{8}$,则P(A)等于(  )
A.$\frac{3}{16}$B.$\frac{13}{16}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在程序框图中,图形符号“□”可用于(  )
A.输出B.赋值C.判断D.结束算法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某个自然数有关的命题,如果当n=k+1(n∈N*)时,该命题不成立,那么可推得n=k时,该命题不成立.现已知当n=2012时,该命题成立,那么,可推得(  )
A.n=2011时,该命题成立B.n=2013时,该命题成立
C.n=2011时,该命题不成立D.n=2013时,该命题不成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设计一个正四棱锥形冷水塔,高是3米,底面的边长是8米:
(1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计);
(2)制造这个冷水塔的侧面需要多少平方米的钢板?

查看答案和解析>>

同步练习册答案