精英家教网 > 高中数学 > 题目详情
4.已知P(B|A)=$\frac{1}{2}$,P(AB)=$\frac{3}{8}$,则P(A)等于(  )
A.$\frac{3}{16}$B.$\frac{13}{16}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 由已知条件利用条件概率计算公式直接求解.

解答 解:∵P(B|A)=$\frac{1}{2}$,P(AB)=$\frac{3}{8}$,
∴P(A)=$\frac{P(AB)}{P(B|A)}$=$\frac{\frac{3}{8}}{\frac{1}{2}}$=$\frac{3}{4}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若sinα、cosα是方程x2+px+p=0两根,则p的值为1-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有$\frac{S_n}{T_n}$=$\frac{2n-3}{4n-3}$,则$\frac{a_6}{b_6}$的值为(  )
A.$\frac{19}{41}$B.$\frac{3}{7}$C.$\frac{7}{15}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|-|x-2|.
(1)作出函数y=f(x)的图象;
(2)解不等式|2x-1|-|x-2|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若变量x,y满足的约束条件$\left\{{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}}\right.$,则Z=2x+3y的最小值5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式(x+1)(x-2)>0的解集是(  )
A.{x|x>-1}B.{x|x<1}C.{x|-1<x<2}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在正方体ABCD-A′B′C′D′中,点P为线段AD′的中点,则异面直线CP与BA′所成角θ的值为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设△ABC的面积为S,2S+$\sqrt{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=0.若|$\overrightarrow{BC}$|=$\sqrt{3}$,则S的最大值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若复数z满足z-2i=zi(其中i为虚数单位),则复数z的模为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案