分析 根据面积公式列方程解出A,使用余弦定理和基本不等式得出AB•AC的最小值,即可得出面积的最小值.
解答 解:∵2S+$\sqrt{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴|AB||AC|sinA+$\sqrt{3}$|AB||AC|cosA=0,
∴tanA=-$\sqrt{3}$,∴A=$\frac{2π}{3}$.
由余弦定理得cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{A{B}^{2}+A{C}^{2}-3}{2AB•AC}$=-$\frac{1}{2}$,
∴AB2+AC2=-AB•AC+3≥2AB•AC,
∴AB•AC≤1.
∴S=$\frac{1}{2}$AB•ACsinA=$\frac{\sqrt{3}}{4}$AB•AC≤$\frac{\sqrt{3}}{4}$.
故答案为:$\frac{{\sqrt{3}}}{4}$.
点评 本题考查了平行向量的数量积运算,余弦定理,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{16}$ | B. | $\frac{13}{16}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=2011时,该命题成立 | B. | n=2013时,该命题成立 | ||
| C. | n=2011时,该命题不成立 | D. | n=2013时,该命题不成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com