| A. | $\sqrt{3}$-$\sqrt{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{6}$$-\sqrt{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 求出椭圆的焦点,准线方程,设△MNF2为等腰直角三角形,且MN=NF2,MN⊥NF2,设N到下准线的距离为m,M到上准线的距离为n,由椭圆的第二定义,结合合分比性质,以及勾股定理,解方程可得a,再由离心率公式即可得到所求值.
解答
解:椭圆Γ:$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>2)的上、下焦点
分别为F1(0,2),F2(0,-2),
离心率e=$\frac{2}{a}$,准线方程为y=±$\frac{{a}^{2}}{2}$,
如图△MNF2为等腰直角三角形,且MN=NF2,MN⊥NF2,
设N到下准线的距离为m,M到上准线的距离为n,
由椭圆的定义可得,e=$\frac{N{F}_{2}}{m}$=$\frac{N{F}_{1}}{{a}^{2}-m}$=$\frac{M{F}_{1}}{n}$=$\frac{M{F}_{2}}{{a}^{2}-n}$,
即有$\frac{N{F}_{2}}{m}$=$\frac{MN}{{a}^{2}-m+n}$=$\frac{M{F}_{2}}{{a}^{2}-n}$=$\frac{\sqrt{2}MN}{{a}^{2}-n}$=$\frac{MN}{m}$,
则2m-n=a2,($\sqrt{2}$+1)n-$\sqrt{2}$m=(1-$\sqrt{2}$)a2,
解得m=(2-$\sqrt{2}$)a2,
又NF12+NF22=F1F22=16,
即有($\frac{2}{a}$(a2-m))2+($\frac{2}{a}$•m))2=16,
代入m,解方程可得a=$\frac{2}{3}$($\sqrt{6}$+$\sqrt{3}$),
即有e=$\frac{c}{a}$=$\frac{2}{\frac{2}{3}(\sqrt{6}+\sqrt{3})}$=$\sqrt{6}$-$\sqrt{3}$.
故选:C.
点评 本题考查椭圆的定义、方程和性质,考查比例的性质和勾股定理的运用,考查化简整理的运算能力,具有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=sinx | C. | f(x)=cosx | D. | f(x)=x${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 或-2 | B. | -2 或-1 | C. | 1或-2 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com