精英家教网 > 高中数学 > 题目详情
8.已知复数z的共轭复数为$\overline{z}$,若(z+2$\overline{z}$)(1-2i)=3-4i(i为虚数单位),则在复平面内,复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 设复数z=a+bi,a,b∈R,根据题意求出a,b的值,即可得到z的坐标,问题得以解决

解答 解:设复数z=a+bi,a,b∈R,i为虚数单位,
则z的共轭复数为$\overline{z}$=a-bi;
∴(z+2$\overline{z}$)(1-2i)=(3a-bi)(1-2i)=3a-2b-(6a+b)i=3-4i,
∴$\left\{\begin{array}{l}{3a-2b=3}\\{6a+b=4}\end{array}\right.$,
解得a=$\frac{11}{15}$,b=-$\frac{2}{5}$,
∴复数z所对应的点的坐标为($\frac{11}{15}$,-$\frac{2}{5}$),
∴在复平面内,复数z所对应的点位于第四象限,
故选:D

点评 本题考查了复数的定义与应用问题,也考查了方程组的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数).以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2acosθ(a>0),且曲线C与直线l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)设A、B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R内的函数f(x)满足f(x+4)=f(x),当x∈[-1,3]时,$f(x)=\left\{\begin{array}{l}t({1-|x|}),x∈[{-1,1}]\\ \sqrt{1-{{({x-2})}^3}},x∈({1,3}]\end{array}\right.$,则当$t∈[{\frac{9}{5},2}]$时,方程5f(x)-x=0的不等实数根的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中$φ∈(0,\frac{π}{2})$,则函数g(x)=cos(2x-φ)的图象(  )
A.关于点$(\frac{π}{12},0)$对称
B.关于轴$x=-\frac{5π}{12}$对称
C.可由函数f(x)的图象向右平移$\frac{π}{6}$个单位得到
D.可由函数f(x)的图象向左平移$\frac{π}{3}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且满足$a=\sqrt{21}$,3b-2c=7,A=60°.
(1)求b的值;
(2)若AD平分∠BAC交BC于点D,求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),则${∫}_{-1}^{tanφ}$(x2-2x)dx=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx.
(1)证明:当x>1时,$x+1-\frac{{2({x-1})}}{f(x)}>0$;
(2)若函数g(x)=f(x)+x-ax2有两个零点x1,x2(x1<x2,a>0),证明:$g'({\frac{{{x_1}+2{x_2}}}{3}})<1-a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A=$\{1,2,3,4\},B=\{y|y=\sqrt{x},x∈A\}$,则A∩B=(  )
A.{1}B.{1,2}C.{1,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我校在高三11月月考中约有1000名理科学生参加考试,数学考试成绩ξ~N(100,a2)(a>0,满分150分),统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的60%,则此次月考中数学成绩不低于120分的学生约有200人.

查看答案和解析>>

同步练习册答案