精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ex-ax-1,g(x)=ln(ex-1)-lnx,若?x0∈(0,+∞),使得f(g(x0)>f(x0)成立,则a的取值范围是(  )
A.(0,+∞)B.(0,1)C.(1,+∞)D.[1,+∞)

分析 当x>0时,ex-1>x,故对?x>0,g(x)>0;构造函数H(x)=xex-ex+1(x>0),则H′(x)=xex>0;从而由导数求得a的范围.

解答 解:ex-x-1的导数为ex-1,当x>0时,y=ex-x-1递增,
即有ex-1>x,故对?x>0,g(x)>0;
构造函数H(x)=xex-ex+1(x>0),则H′(x)=xex>0;
故函数H(x)在(0,+∞)上单调递增,
则H(x)>H(0),
则?x>0,xex-ex+1>0成立,
即g(x)<x在x>0时恒成立,
当a>1时,ex-ax-1的导数为ex-a,f(x)在(lna,+∞)上单调递增,
在(0,lna)上单调递减,
当0<x<lna时,0<g(x)<x<lna,
所以f(g(x))>f(x),
所以满足题意的a的取值范围是(1,+∞).
故选:C.

点评 本题考查了导数的综合应用:求单调区间,考查单调性的运用和存在性问题的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若集合A={x|(x+1)(x-10)<0},B={y∈N|y<6},则A∩B等于(  )
A.B.(-1,6)C.{1,2,3,4,5}D.{0,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且6S=(a+b)2-c2,则tanC等于(  )
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$\frac{12}{5}$D.$-\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC中,角A、B、C对应的边分别为a,b,c,已知A=$\frac{π}{3}$,b=5,△ABC的面积S=5$\sqrt{3}$,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数{an}满足a1=1,an+1=an+n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2014}}$=$\frac{4028}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),点M是椭圆上任意一点,△MF1F2的周长是2$\sqrt{2}$+2,且△MF1F2面积的最大值是1.
(1)求椭圆C的标准方程;
(2)若N是椭圆上一点,点M,N不重合,O为坐标原点,当直线MN的斜率为2时,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求直线4x-3y-5=0的倾斜角(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)=ex-ax+1在R上不是单调函数的充要条件是a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,b>0,且a+b=2,则ab有(  )
A.最大值1B.最小值1C.最小值2D.最大值2

查看答案和解析>>

同步练习册答案