·ÖÎö £¨1£©ÓɵãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®¿ÉµÃ$\left\{\begin{array}{l}{2a+2c=2\sqrt{2}+2}\\{\frac{1}{2}¡Á2c¡Áb=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºy=2x+m£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º9x2+8mx+2m2-2=0£¬¡÷£¾0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|MN|=$\sqrt{£¨1+{2}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£®Ôµãµ½Ö±ÏßMNµÄ¾àÀëd=$\frac{|m|}{\sqrt{5}}$£¬¿ÉµÃS¡÷OMN=$\frac{1}{2}|MN|$d£¬ÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ßµãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®
¡à$\left\{\begin{array}{l}{2a+2c=2\sqrt{2}+2}\\{\frac{1}{2}¡Á2c¡Áb=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=$\sqrt{2}$£¬b=c=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºy=2x+m£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬»¯Îª£º9x2+8mx+2m2-2=0£¬
¡÷£¾0£¬¿ÉµÃ£ºm2£¼9£®
¡àx1+x2=$\frac{-8m}{9}$£¬x1x2=$\frac{2{m}^{2}-2}{9}$£¬
¡à|MN|=$\sqrt{£¨1+{2}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5[\frac{64{m}^{2}}{81}-\frac{4£¨2{m}^{2}-2£©}{9}]}$=$\frac{2\sqrt{5£¨18-2{m}^{2}£©}}{9}$£®
Ե㵽ֱÏßMNµÄ¾àÀëd=$\frac{|m|}{\sqrt{5}}$£¬
¡àS¡÷OMN=$\frac{1}{2}|MN|$d=$\frac{1}{2}$¡Á$\frac{2\sqrt{5£¨18-2{m}^{2}£©}}{9}$¡Á$\frac{|m|}{\sqrt{5}}$=$\frac{\sqrt{{m}^{2}£¨18-2{m}^{2}£©}}{9}$$¡Ü\frac{\sqrt{\frac{1}{2}£¨\frac{2{m}^{2}+18-2{m}^{2}}{2}£©^{2}}}{9}$=$\frac{\sqrt{2}}{2}$£¬µ±ÇÒ½öµ±m=¡À$\frac{3\sqrt{2}}{2}$ʱȡµÈºÅ£®
¡à¡÷OMNÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|-1£¼x£¼0} | B£® | {x|0£¼x¡Ü2} | C£® | {x|0£¼x£¼2} | D£® | {x|0£¼x¡Ü1} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | -$\frac{1}{4}$ | C£® | $\frac{\sqrt{3}}{4}$ | D£® | -$\frac{\sqrt{3}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬+¡Þ£© | B£® | £¨0£¬1£© | C£® | £¨1£¬+¡Þ£© | D£® | [1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 3 | C£® | 2 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com