11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬µãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôNÊÇÍÖÔ²ÉÏÒ»µã£¬µãM£¬N²»Öغϣ¬OÎª×ø±êÔ­µã£¬µ±Ö±ÏßMNµÄбÂÊΪ2ʱ£¬Çó¡÷OMNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓɵãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®¿ÉµÃ$\left\{\begin{array}{l}{2a+2c=2\sqrt{2}+2}\\{\frac{1}{2}¡Á2c¡Áb=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºy=2x+m£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º9x2+8mx+2m2-2=0£¬¡÷£¾0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|MN|=$\sqrt{£¨1+{2}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$£®Ô­µãµ½Ö±ÏßMNµÄ¾àÀëd=$\frac{|m|}{\sqrt{5}}$£¬¿ÉµÃS¡÷OMN=$\frac{1}{2}|MN|$d£¬ÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßµãMÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬¡÷MF1F2µÄÖܳ¤ÊÇ2$\sqrt{2}$+2£¬ÇÒ¡÷MF1F2Ãæ»ýµÄ×î´óÖµÊÇ1£®
¡à$\left\{\begin{array}{l}{2a+2c=2\sqrt{2}+2}\\{\frac{1}{2}¡Á2c¡Áb=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=$\sqrt{2}$£¬b=c=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèÖ±ÏßMNµÄ·½³ÌΪ£ºy=2x+m£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬»¯Îª£º9x2+8mx+2m2-2=0£¬
¡÷£¾0£¬¿ÉµÃ£ºm2£¼9£®
¡àx1+x2=$\frac{-8m}{9}$£¬x1x2=$\frac{2{m}^{2}-2}{9}$£¬
¡à|MN|=$\sqrt{£¨1+{2}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5[\frac{64{m}^{2}}{81}-\frac{4£¨2{m}^{2}-2£©}{9}]}$=$\frac{2\sqrt{5£¨18-2{m}^{2}£©}}{9}$£®
Ô­µãµ½Ö±ÏßMNµÄ¾àÀëd=$\frac{|m|}{\sqrt{5}}$£¬
¡àS¡÷OMN=$\frac{1}{2}|MN|$d=$\frac{1}{2}$¡Á$\frac{2\sqrt{5£¨18-2{m}^{2}£©}}{9}$¡Á$\frac{|m|}{\sqrt{5}}$=$\frac{\sqrt{{m}^{2}£¨18-2{m}^{2}£©}}{9}$$¡Ü\frac{\sqrt{\frac{1}{2}£¨\frac{2{m}^{2}+18-2{m}^{2}}{2}£©^{2}}}{9}$=$\frac{\sqrt{2}}{2}$£¬µ±ÇÒ½öµ±m=¡À$\frac{3\sqrt{2}}{2}$ʱȡµÈºÅ£®
¡à¡÷OMNÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèÈ«¼¯U=R£¬A={x|0.3x£¼1}£¬B={x|x£¼x2-2}£¬ÔòA¡É£¨∁UB£©=£¨¡¡¡¡£©
A£®{x|-1£¼x£¼0}B£®{x|0£¼x¡Ü2}C£®{x|0£¼x£¼2}D£®{x|0£¼x¡Ü1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªcos£¨¦Á+¦Â£©=$\frac{2}{5}$£¬cos£¨¦Á-¦Â£©=$\frac{3}{5}$£¬Çótan¦Átan¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®cos75¡ãcos165¡ãµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®-$\frac{1}{4}$C£®$\frac{\sqrt{3}}{4}$D£®-$\frac{\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=ex-ax-1£¬g£¨x£©=ln£¨ex-1£©-lnx£¬Èô?x0¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃf£¨g£¨x0£©£¾f£¨x0£©³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®£¨0£¬1£©C£®£¨1£¬+¡Þ£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×㣬¶ÔÈÎÒâµÄÕýÕûÊým£¬n¶¼ÓÐam•an=2m+n+2³ÉÁ¢£®
£¨¢ñ£©ÇóÊýÁÐ{log2an}µÄǰnÏîºÍSn£»
£¨¢ò£©Éèbn=an•log2an£¨n¡ÊN*£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆøÏǫ́AÕý¶«·½Ïò400ǧÃ×µÄB´¦º£ÃæÉÏÓÐÒ»¸ǫ̈·çÖÐÐÄÐγɣ®ÒÑ̨֪·çÒÔÿСʱ40ǧÃ×µÄËÙ¶ÈÏòÎ÷±±·½ÏòÒÆ¶¯£¬¾ą̀·çÖÐÐÄ300ǧÃ×ÒÔÄڵĵط½¶¼»áÊܵ½Ì¨·çµÄÓ°Ï죬ÎÊ´ÓÏÖÔÚÆð¶àÉÙʱ¼äÆøÏǫ́A»áÊܵ½Ì¨·çÓ°Ï죬³ÖÐøÓ°ÏìµÄʱ¼äÓж೤£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôʼþÔÚÒ»´ÎÊÔÑéÖз¢Éú´ÎÊýµÄ·½²îµÈÓÚ0.25£¬Ôò¸ÃʼþÔÚÒ»´ÎÊÔÑéÖз¢ÉúµÄ¸ÅÂÊΪ0.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=lg£¨$\sqrt{{x}^{2}+1}$+x£©+$\frac{2}{1{0}^{x}+1}$+m£¨m¡ÊZ£©£¬ÏÖÓмס¢ÒÒ¡¢±û¡¢¶¡ËĸöͬѧÏȸ÷×Ôȡһ¸öÕûÊým£¬È»ºó¼ÆËãf£¨-1£©+f£¨1£©£¬¼ÆËãµÄ½á¹û·Ö±ðΪ-8£¬-1£¬3£¬7£¬ÔòÕâËĸöͬѧÖмÆËã´íÎóµÄÈËÊýÖÁÉÙÊÇ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸