精英家教网 > 高中数学 > 题目详情
9.设过抛物线y2=4x的焦点F的直线l交抛物线于点A,B,若以AB为直径的圆过点P(-1,2),且与x轴交于M(m,0),N(n,0)两点,则mn=(  )
A.3B.2C.-3D.-2

分析 设直线MN的方程为x=ty+1,代入椭圆方程,由韦达定理及抛物线的性质,求得圆心坐标,由以AB为直径的圆过点P(-1,2)代入即可求得t的值,求得椭圆方程,当y=0时,即可求得m和n的值,即可求得mn.

解答 解:抛物线焦点坐标为F(1,0),准线方程为x=-1….(2分)
设直线MN的方程为x=ty+1,A、B的坐标分别为($\frac{{y}_{1}^{2}}{4}$,y1),($\frac{{y}_{2}^{2}}{4}$,y2
由$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,y2-4my-4=0,
∴y1+y2=4m,y1y2=-4,
x1+x2=ty1+1+ty2+1=t(y1+y2)+2=4t2+2,$\frac{{x}_{1}+{x}_{2}}{2}$=2t2+1,$\frac{{y}_{1}+{y}_{2}}{2}$=2t,
则圆心D(2t2+1,2t),
由抛物线的性质可知:丨AB丨=x1+x2+p=4(t2+1),
由P到圆心的距离d=$\sqrt{[2t+1-(-1)]^{2}+(2t-2)^{2}}$,
由题意可知:d=$\frac{1}{2}$丨AB丨,
解得:t=1,
则圆心为(3,2),半径为4,
∴圆的方程方程为(x-3)2+(y-2)2=42
则当y=0,求得与x轴的交点坐标,假设m>n,
则m=3-2$\sqrt{3}$,n=3+2$\sqrt{3}$,
∴mn=(3-2$\sqrt{3}$)(3+2$\sqrt{3}$)=-3,
故选:C.

点评 本题考查直线与抛物线的位置关系,考查抛物线的简单几何性质及中点坐标公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=2x,x∈A},则A∩B=(  )
A.[0,1)B.[1,2]C.(2,4]D.[2.4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在边长为2的正方体ABCD-A1B1C1D1中,E为DD1中点,
(1)证明:BD1∥平面AEC;
(2)求三棱锥E-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α,β∈(0,π),且$cos(2α+β)-2cos(α+β)cosα=\frac{3}{5}$,则sin2β=$-\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在Rt△ABC内有一系列的正方形,它们的边长依次为a1,a2,…,an,…,若AB=a,BC=2a,则所有正方形的面积的和为$\frac{4}{5}{a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲、乙两人从4门课程中各选修2门.则不同的选法共有36种,2人所选课程至少有一门相同的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将数字1,1,2,2,3,3排成三行两列,要求每行的数字互不相同,每列的数字也互不相同,则不同的排列方法共有(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个物体的运动方程为s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在3秒这个时刻的瞬时速度是(  )
A.7米/秒B.6米/秒C.5米/秒D.8米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,函数f(x)=ax2+bx+c,若x0满足2ax0+b=0,则下列选项中是假命题的是(  )
A.?x∈R,f(x)≤f(x0B.?x∈R,f(x)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x)≥f(x0

查看答案和解析>>

同步练习册答案