精英家教网 > 高中数学 > 题目详情
6.设奇函数f(x)在R上存在导数f′(x),且在(0,+∞)上f′(x)<x2,若f(1-m)-f(m)≥$\frac{1}{3}[{{{(1-m)}^3}-{m^3}}]$,则实数m的取值范围为(  )
A.$[{-\frac{1}{2},\frac{1}{2}}]$B.$[{\frac{1}{2},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},+∞})$

分析 构造辅助函数$g(x)=f(x)-\frac{1}{3}{x^3}$,由f(x)是奇函数,g(-x)+g(x)=0,可知g(x)是奇函数,求导判断g(x)的单调性,$f(1-m)-f(m)≥\frac{1}{3}[{{{(1-m)}^3}-{m^3}}]$,即g(1-m)≥g(m),解得m的取值范围.

解答 解:令$g(x)=f(x)-\frac{1}{3}{x^3}$,
∵$g(-x)+g(x)=f(-x)-\frac{1}{3}{(-x)^3}+f(x)-\frac{1}{3}{x^3}=0$,
∴函数g(x)为奇函数,
∵x∈(0,+∞)时,
g′(x)=f′(x)-x2<0,
函数g(x)在x∈(0,+∞)为减函数,
又由题可知,f(0)=0,g(0)=0,
所以函数g(x)在R上为减函数,
$f(1-m)-f(m)≥\frac{1}{3}[{{{(1-m)}^3}-{m^3}}]$,即g(1-m)≥g(m),
∴1-m≤m,
∴$m≥\frac{1}{2}$.
故选B.

点评 本题主要考查判断函数的奇偶性、利用导数法求函数的单调性,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设a∈R,i是虚数单位,若(a+i)(1-i)为纯虚数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若不等式x-10>0或x+2<0成立时,不等式x-m>1或x+m<1(m>0)不恒成立,且若不等式x-m>1或x+m<1(m>0)成立时,不等式x一10>0或x+2<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)在R上存在导数f′(x),对于任意的实数x,有f(x)+f(-x)=2x2,当x∈(-∞,0]时,f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在“2016”的logo设计中,有这样一个图案,其由线段l、抛物线弧E及圆C三部分组成,对其进行代数化的分析,如图建系,发现:圆C方程为(x-4)2+y2=16,抛物线弧E:y2=2px(y≥0,0≤x≤8),若圆心C恰为抛物线y2=2px的焦点,线段l所在的直线恰为抛物线y2=2px的准线.
(Ⅰ)求p的值及线段l所在的直线方程;
(Ⅱ)P为圆C上的任意一点,过P作圆的切线交抛物线弧E于A、B两点,问是否存在这样的点P,使得弦AB在l上的投影长度与圆C的直径之比为4:3?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R的两点A,B.若直线AR,BR分别交直线l:y=2x+2于M,N两点,求线段MN最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{1}{{\sqrt{2}}}$(cos34°-sin34°),b=cos50°cos128°+cos40°cos38°,c=$\frac{1}{2}$(cos80°-2cos250°+1),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合M={x|y=lg(x2-8x)},N={x|x=2n-1,n∈Z},则{1,3,5,7}=(  )
A.R(M∩N)B.(∁RM)∩NC.(∁RM)∩(∁RN)D.M∩(∁RN)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某兴趣小组有男生2名,女生1名,现从中任选2名学生去参加问卷调查,则恰有一名男生与一名女生的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案