4£®ÒÑÖª$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨-2£¬4£©£¬$\overrightarrow{c}$=£¨3£¬-3£©£®
£¨1£©Çó|$\overrightarrow{a}$-$\overrightarrow{b}$|£»
£¨2£©Éè$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{c}$µÄ¼Ð½ÇΪ¦È£¬Çó¦ÈµÄ´óС£®

·ÖÎö £¨1£©ÀûÓÃÏòÁ¿µÄ×ø±êÔËËãÒÔ¼°ÏòÁ¿µÄÄ£Çó½â¼´¿É£®
£¨2£©ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÇó½âÏòÁ¿µÄ¼Ð½Ç¼´¿É£®

½â´ð ½â£º$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨-2£¬4£©£¬$\overrightarrow{c}$=£¨3£¬-3£©£®
£¨1£©|$\overrightarrow{a}$-$\overrightarrow{b}$|=|£¨4£¬-3£©|=$\sqrt{{4}^{2}+£¨-3£©^{2}}$=5£»
£¨2£©$\overrightarrow{a}$+$\overrightarrow{b}$=£¨0£¬5£©Óë$\overrightarrow{c}$µÄ¼Ð½ÇΪ¦È£¬cos¦È=$\frac{£¨\overrightarrow{a}+\overrightarrow{b}£©•\overrightarrow{c}}{|\overrightarrow{a}+\overrightarrow{b}||\overrightarrow{c}|}$=$\frac{3¡Á0-3¡Á5}{5¡Á\sqrt{{3}^{2}+£¨-3£©^{2}}}$=$\frac{\sqrt{2}}{2}$£®
¡à¦È=$\frac{¦Ð}{4}$£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄ×ø±êÔËË㣬ÏòÁ¿µÄÄ£ÒÔ¼°ÊýÁ¿»ýµÄÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýµãF2×÷´¹Ö±ÓÚF1F2µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬ÈôÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¡÷F1ABµÄÃæ»ýΪ4$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¶¯Ö±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚP¡¢QÁ½µã£¬ÇÒOP¡ÍOQ£¬ÊÇ·ñ´æÔÚÔ²x2+y2=r2ʹµÃlÇ¡ºÃÊǸÃÔ²µÄÇÐÏߣ¬Èô´æÔÚ£¬Çó³ör£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¸ù¾ÝÏÂÁÐÌõ¼þ£¬·Ö±ðÇóA¡ÉB£¬A¡ÈB£º
£¨1£©A={-1£¬0£¬1£¬2£¬3}£¬B={-1£¬0£¬4}£»
£¨2£©A={-1£¬0£¬1£¬2£¬3}£¬B={-1£¬0£¬1£»
£¨3£©A={-1£¬0£¬1£¬2£¬3}£¬B={-1£¬0£¬1£¬2£¬3}£»
£¨4£©A={-1£¬0£¬1£¬2£¬3}£¬B=∅

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êýy=1-sinxµÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®[2k¦Ð£¬£¨2k+1£©¦Ð]B£®[2k¦Ð+¦Ð£¬£¨2k+1£©¦Ð]
C£®[2k¦Ð-$\frac{¦Ð}{2}$£¬2k¦Ð+$\frac{¦Ð}{2}$]D£®[2k¦Ð+$\frac{¦Ð}{2}$£¬2k¦Ð+$\frac{3¦Ð}{2}$]£¨ÒÔÉÏk¡ÊZ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈôA£¬B£¬CÊÇÈý½ÇÐÎABCµÄÈý¸öÄڽǣ¬ÇóÖ¤£ºcos2A+cos2B+cos2C+2cosAcosBcosC=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÕýÏîµÈ±ÈÊýÁÐ{an}ÖУ¬Ç°nÏîºÍΪ${S_n}£¬{a_5}=\frac{1}{2}£¬{a_6}+{a_7}=3£¬Ôò{S_5}$=$\frac{31}{32}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¿Õ¼äÈýµãA£¨-2£¬0£¬2£©£¬B£¨-1£¬1£¬2£©£¬C£¨-3£¬0£¬3£©£®Éè$\overrightarrow a$=$\overrightarrow{AB}$£¬$\overrightarrow b$=$\overrightarrow{AC}$£¬
£¨1£©Çó$\overrightarrow a$ºÍ$\overrightarrow b$µÄ¼Ð½Ç¦È£»
£¨2£©ÈôÏòÁ¿k$\overrightarrow a$+$\overrightarrow b$Óëk$\overrightarrow a$-$\overrightarrow b$»¥Ïà´¹Ö±£¬ÇókµÄÖµ£®
£¨3£©Çó|$\overrightarrow a$+3$\overrightarrow b$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²$E£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ½¹µãΪF£¬¶ÌÖ᳤Ϊ2£¬µãMΪÍÖÔ²EÉÏÒ»¸ö¶¯µã£¬ÇÒ|MF|µÄ×î´óֵΪ$\sqrt{2}+1$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãMµÄ×ø±êΪ$£¨1£¬\frac{{\sqrt{2}}}{2}£©$£¬µãA£¬BΪÍÖÔ²EÉÏÒìÓÚµãMµÄ²»Í¬Á½µã£¬ÇÒÖ±Ïßx=1ƽ·Ö¡ÏAMB£¬ÇóÖ±ÏßABµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª£¨x+a£©2£¨x-1£©3µÄÕ¹¿ªÊ½ÖУ¬x4µÄϵÊýΪ1£¬Ôòa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸