精英家教网 > 高中数学 > 题目详情
15.抛物线x2+y=0的焦点坐标为(0,-$\frac{1}{4}$).

分析 先把抛物线的方程化为标准形式,再利用抛物线 x2=-2py 的焦点坐标为(0,-$\frac{p}{2}$),求出抛物线x2+y=0的焦点坐标.

解答 解:∵抛物线x2+y=0,即x2=-y,∴p=$\frac{1}{2}$,$\frac{p}{2}$=$\frac{1}{4}$,
∴焦点坐标是 (0,-$\frac{1}{4}$),
故答案为:(0,-$\frac{1}{4}$).

点评 本题考查抛物线的标准方程和简单性质的应用,抛物线 x2=-2py 的焦点坐标为(0,-$\frac{p}{2}$).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C1:x2+y2=r2(r>0)与抛物线C2:x2=2py(p>0),点($\sqrt{2}$,-2)是圆C1与抛物线C2准线l的一个交点.
(1)求圆C1与抛物线C2的方程;
(2)若点M是直线l上的动点,过点M作抛物线C2的两条切线,切点分别为A、B,直线AB与圆C1交于点E、F,求$\overrightarrow{OE}$•$\overrightarrow{OF}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个均匀小正方体的6个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷1次,则向上的数字为2的概率为$\frac{1}{6}$;将这个小正方体抛掷2次,则向上的数字之积的数学期望是$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知cos(α+β)=1,求证:sin(α+2β)=sinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x+1)的图象关于y轴对称,且函数f(x)在(1,+∞)上单调,若数列{an}是公差不为0的等差数列,且f(a6)=f(a20),则{an}的前25项之和为(  )
A.0B.$\frac{25}{2}$C.25D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式.
(2)若f($\frac{4α}{π}$)=1且α∈($\frac{π}{4}$,$\frac{3π}{4}$),求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线y=ax-2与直线y=(a+2)x-2互相垂直,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$tanα=\frac{1}{2}$,则sin2α的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某商店将进价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量增加10个.为了每日获得最大利润,则商品的售价应定为(  )
A.10元B.15元C.20元D.25元

查看答案和解析>>

同步练习册答案