精英家教网 > 高中数学 > 题目详情
5.某商店将进价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量增加10个.为了每日获得最大利润,则商品的售价应定为(  )
A.10元B.15元C.20元D.25元

分析 设出该商品售价,求得销售量,可得利润函数,利用配方法,可得结论.

解答 解:设每个商品的售价定为x元时,每天所获得的利润为f(x),
10≤x≤18时,f(x)=(x-10)•[60+(18-x)×10]
=-10x 2+340x-2400,
=-10(x-17)2+490,
则x=17时最大利润f(x)=490.
①当x>18时,f(x)=(x-10)•[60-(x-18)×5]
=-5(x-20)2+500,
则x=20时最大利润f(x)=500,
综上可得当售价定为每个20元时,获得的最大利润为500元.
故选C.

点评 此题主要考查了二次函数的应用,得到涨价后的销售量及把所给利润的关系式进行配方是解决本题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.抛物线x2+y=0的焦点坐标为(0,-$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在下列四个命题中,
①函数$y=tan({x+\frac{π}{4}})$的定义域是$\left\{{x\left|{x≠kπ+\frac{π}{4}\;,\;\;k∈Z}\right.}\right\}$;
②已知$sinα=\frac{1}{2}$,且α∈[0,2π],则α的取值集合是$\left\{{\frac{π}{6}}\right\}$;
③函数$y=sin({2x+\frac{π}{3}})+sin({2x-\frac{π}{3}})$的最小正周期是π;
④△ABC中,若cosA>cosB,则A<B.
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.角θ的终边过点P(3t,4t)(t>0),则sinθ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≥4)}\\{x+1(x<4)}\end{array}\right.$,则f[f(3)]=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简下列算式
(1)lg5•lg20+(lg2)2
(2)${({-\frac{27}{8}})^{-\frac{2}{3}}}+{(0.002)^{-\frac{1}{2}}}-10{({\sqrt{5}-2})^{-1}}+{({\sqrt{2}-\sqrt{3}})^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)满足f(x-2)=x2-4x+9.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)-bx,若当$x∈[{\frac{1}{2}\;,\;\;1}]$时,g(x)的最大值为$\frac{11}{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f,g都是由A到A的映射,其对应法则如表(从上到下);
表1  映射f对应法则
 原像 1 2 3 4
 像 3 4 1
表2  映射g的对应法则
 原像 1 2 3
 像 4 3 1
则与f[g(1)]相同的是(  )
A.g[f(3)]B.g[f(2)]C.g[f(4)]D.g[f(1)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,圆C的极坐标方程为ρ=2$\sqrt{3}$cosθ-2sinθ,点A的极坐标为($\sqrt{3}$,2π),把极点作为平面直角坐标系的原点,极轴作为x轴的正半轴,并在两种坐标系中取相同的长度单位.
(1)求圆C在直角坐标系中的标准方程;
(2)设P为圆C上任意一点,圆心C为线段AB的中点,求|PA|+|PB|的最大值.

查看答案和解析>>

同步练习册答案