精英家教网 > 高中数学 > 题目详情
4.已知$tanα=\frac{1}{2}$,则sin2α的值为$\frac{4}{5}$.

分析 利用同角三角函数的基本关系,二倍角的正弦公式,求得sin2α的值.

解答 解:∵已知$tanα=\frac{1}{2}$,则sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα}{1{+tan}^{2}α}$=$\frac{1}{1+\frac{1}{4}}$=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题主要考查同角三角函数的基本关系,二倍角的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图所示的程序框图中,输出的S的值是(  )
A.80B.100C.120D.140

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线x2+y=0的焦点坐标为(0,-$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的三个顶点分别为A(1,2),B(-3,4),C(2,-6),求:
(1)边BC的垂直平分线的方程;
(2)AC边上的中线BD所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC中,角A,B,C的对边长分别为a,b,c,∠A=60°,$a=\sqrt{3}$.则c+2b的最大值为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=sin({2x+\frac{π}{3}})$,定义域为[a,b],值域是$[{-1\;,\;\;\frac{1}{2}}]$,则下列正确命题的序号是(1)、(2)、(4).
(1)b-a最小值是$\frac{π}{3}$;
(2)b-a最大值是$\frac{2π}{3}$;
(3)b-a无最大值;
(4)直线$x=\frac{2015}{12}π$不可能是此函数的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在下列四个命题中,
①函数$y=tan({x+\frac{π}{4}})$的定义域是$\left\{{x\left|{x≠kπ+\frac{π}{4}\;,\;\;k∈Z}\right.}\right\}$;
②已知$sinα=\frac{1}{2}$,且α∈[0,2π],则α的取值集合是$\left\{{\frac{π}{6}}\right\}$;
③函数$y=sin({2x+\frac{π}{3}})+sin({2x-\frac{π}{3}})$的最小正周期是π;
④△ABC中,若cosA>cosB,则A<B.
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.角θ的终边过点P(3t,4t)(t>0),则sinθ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f,g都是由A到A的映射,其对应法则如表(从上到下);
表1  映射f对应法则
 原像 1 2 3 4
 像 3 4 1
表2  映射g的对应法则
 原像 1 2 3
 像 4 3 1
则与f[g(1)]相同的是(  )
A.g[f(3)]B.g[f(2)]C.g[f(4)]D.g[f(1)]

查看答案和解析>>

同步练习册答案