精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式.
(2)若f($\frac{4α}{π}$)=1且α∈($\frac{π}{4}$,$\frac{3π}{4}$),求sinα.

分析 (1)利用由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用同角三角的基本关系,求得 cos(α+$\frac{π}{4}$)的值,再利用两角差的正弦公式求得sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]的值.

解答 解:(1)根据函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的图象,
可得A=2,T=$\frac{2π}{ω}$=7+1,∴ω=$\frac{π}{4}$.
再根据五点法作图可得,$\frac{π}{4}$•(-1)+φ=0,求得φ=$\frac{π}{4}$,
故f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$).
(2)若f($\frac{4α}{π}$)=2sin(α+$\frac{π}{4}$)=1,∴sin(α+$\frac{π}{4}$)=$\frac{1}{2}$,
且α∈($\frac{π}{4}$,$\frac{3π}{4}$),∴α+$\frac{π}{4}$∈($\frac{π}{2}$,π),∴cos(α+$\frac{π}{4}$)=-$\frac{\sqrt{3}}{2}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{1}{2}•\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,同角三角的基本关系,两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若等比数列{an}的公比为2,且a3-a1=2$\sqrt{3}$,则$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$=1-$\frac{1}{{4}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$),λ∈(0,+∞),则动点P的轨迹一定通过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设实数x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ x+2y≥1\end{array}$,则z=3x-4y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线x2+y=0的焦点坐标为(0,-$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知递增等差数列{an}满足a1•a4=7,a2+a3=8.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Sn,求证:Sn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的三个顶点分别为A(1,2),B(-3,4),C(2,-6),求:
(1)边BC的垂直平分线的方程;
(2)AC边上的中线BD所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=sin({2x+\frac{π}{3}})$,定义域为[a,b],值域是$[{-1\;,\;\;\frac{1}{2}}]$,则下列正确命题的序号是(1)、(2)、(4).
(1)b-a最小值是$\frac{π}{3}$;
(2)b-a最大值是$\frac{2π}{3}$;
(3)b-a无最大值;
(4)直线$x=\frac{2015}{12}π$不可能是此函数的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简下列算式
(1)lg5•lg20+(lg2)2
(2)${({-\frac{27}{8}})^{-\frac{2}{3}}}+{(0.002)^{-\frac{1}{2}}}-10{({\sqrt{5}-2})^{-1}}+{({\sqrt{2}-\sqrt{3}})^0}$.

查看答案和解析>>

同步练习册答案