精英家教网 > 高中数学 > 题目详情
18.长、宽、高分別为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为9π.

分析 先求长方体的对角线的长度,就是球的直径,然后求出它的表面积.

解答 解:长方体的体对角线的长是:$\sqrt{4+1+4}$=3
球的半径是:$\frac{3}{2}$
这个球的表面积:4π$•\frac{9}{4}$=9π
故答案为:9π

点评 本题考查球的内接体,球的表面积,考查空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某商场有A、B、C、D四类产品,A、B、C、D分别有40,10,30,20种,现从这抽取一个容量为20的样本,则抽取的B、D两类产品种数之和是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{3}}{2}$,短半轴长b=1.
(1)求椭圆C的方程;
(2)设A、B分别是椭圆C的左、右顶点,直线l:x=m(m≠2),当点P在直线l(纵坐标不为0)上移动时,直线PB、线段PA的延长线与椭圆C分别相交于M、N两点,且以MN为直径的圆恒经过点A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输出的p是720,则输入的N的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的标准方程;
(2)过椭圆上一点M作椭圆的切线,交直线x=-8于点P,试问:以PM为直径的圆是否过定点?若过定点,求出该定点;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我市为了检测空气质量,每天都要记录空气质量指数(指数采用10分制,保留一位小数),现随机抽取20天的指数,绘制成如图所示的统计图(以整数部分为茎,小数部分为叶),设指数不低于8.5的视为当天空气质量为优良.
(1)求从这20天中随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输出的a等于341,则判断框内应填写(  )
A.k<4?B.k<5?C.k<6?D.k<7?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,直线l过抛物线y2=4x的焦点F且分别交抛物线及其准线于A,B,C,若$\frac{|BF|}{|BC|}$=$\frac{\sqrt{5}}{5}$,则|AB|等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.生产一批零件,其质量按测试指标划分为:指标大于或等于8为优质品,小于8大于等于4为正品,小于4为次品,现随机抽取这种零件100件进行检测,检测结果统计如下:据以上述测试中各组的频率作为相应的概率.
测试指标[0,2)[2,4)[4,6)[6,8)[8,10)
 零件数 2 3238 20
(1)试估计这种零件的平均质量指标;
(2)生产一件零件,若是优质品可盈利40元,若是正品盈利20元,若是次品则亏损20元,若从大量的零件中随机抽取2件,其利润之和记为x(单位:元),求x的分布列及数学期望.

查看答案和解析>>

同步练习册答案