精英家教网 > 高中数学 > 题目详情
7.如图,直线l过抛物线y2=4x的焦点F且分别交抛物线及其准线于A,B,C,若$\frac{|BF|}{|BC|}$=$\frac{\sqrt{5}}{5}$,则|AB|等于(  )
A.4B.5C.6D.7

分析 作AM、BN垂直准线于点M、N,根据$\frac{|BF|}{|BC|}$=$\frac{\sqrt{5}}{5}$,和抛物线的定义,可得tan∠NCB=2,从而可得直线方程,与抛物线方程联立,利用抛物线的定义,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),
作AM、BN垂直准线于点M、N,则|BN|=|BF|,
∵$\frac{|BF|}{|BC|}$=$\frac{\sqrt{5}}{5}$,∴sin∠NCB=$\frac{\sqrt{5}}{5}$,
∴tan∠NCB=2
∴AF的方程为y=2(x-1),
代入y2=4x,可得x2-3x+1=0
∴x1+x2=3,
∴|AB|=x1+x2+2=5.
故选:B.

点评 此题是个中档题.考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.等比数列{an}中,a5、a7是函数f(x)=x2-4x+3的两个零点,则a3•a9等于(  )
A.-4B.-3C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.长、宽、高分別为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是一个几何体的三视图,则该几何体的体积为(  )
A.$\frac{80}{3}$B.$\frac{70}{3}$C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
①直线l的方向向量为$\overrightarrow{a}$=(1,-1,2),直线m的方向向量$\overrightarrow{b}$=(2,1,-$\frac{1}{2}$),则l与m垂直;
②直线l的方向向量$\overrightarrow{a}$=(0,1,-1),平面α的法向量$\overrightarrow{n}$=(1,-1,-1),则l⊥α;
③平面α、β的法向量分别为$\overrightarrow{{n}_{1}}$=(0,1,3),$\overrightarrow{{n}_{2}}$=(1,0,2),则α∥β;
④平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量$\overrightarrow{n}$=(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是①④.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过椭圆Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1外一点P(x0,y0)(x0≠±2且y0≠0)向椭圆Г作切线,切点分别为A、B,直线AB交y轴于M,记直线PA、PB、PM的斜率分别为k1、k2、k0
(1)当点P的坐标为(4,3)时,求直线AB的方程;
(2)当x0≠0时,是否存在常数λ,使得$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{0}}$恒成立?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某省高中男生升高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16),现从该省某高校三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第六组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,若曲线y=2x2+$\frac{a}{x}$(a是常数)过点P(-1,-30),则函数y=2x2+$\frac{a}{x}$在区间[1,4]的最大值与最小值的和为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知菱形ABCD的边长为为4,∠ABC=$\frac{π}{3}$,向其内部随机投放一点P,则点P与菱形各顶点距离均大于1的概率为(  )
A.1-$\frac{\sqrt{3}π}{24}$B.1-$\frac{\sqrt{3}π}{12}$C.$\frac{\sqrt{3}π}{24}$D.$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

同步练习册答案