精英家教网 > 高中数学 > 题目详情
9.已知椭圆C的中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{3}}{2}$,短半轴长b=1.
(1)求椭圆C的方程;
(2)设A、B分别是椭圆C的左、右顶点,直线l:x=m(m≠2),当点P在直线l(纵坐标不为0)上移动时,直线PB、线段PA的延长线与椭圆C分别相交于M、N两点,且以MN为直径的圆恒经过点A,求m的值.

分析 (1)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),可得$e=\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,b=1,a2=b2+c2,联立解出即可得出;
(2)设P(m,yP),A(-2,0),B(2,0),N(x1,y1),M(x2,y2).由于以MN为直径的圆恒经过点A,不妨设直线AM、AN的方程为:ky=x+2,-$\frac{1}{k}$y=x+2,k≠0.联立$\left\{\begin{array}{l}{ky=x+2}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得M坐标.可得直线BM的方程,令x=m,解得yP.由直线AN的方程,令x=m,解得yP,进而解出m.

解答 解:(1)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),∵$e=\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,b=1,a2=b2+c2
解得b=1,a=2,c=$\sqrt{3}$.
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)设P(m,yP),A(-2,0),B(2,0),N(x1,y1),M(x2,y2).
∵以MN为直径的圆恒经过点A,
∴不妨设直线AM、AN的方程为:ky=x+2,-$\frac{1}{k}$y=x+2,k≠0.
联立$\left\{\begin{array}{l}{ky=x+2}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
化为:(k2+4)y2-4ky=0,
解得yM=$\frac{4k}{{k}^{2}+4}$,xM=kyM-2=$\frac{2{k}^{2}-8}{{k}^{2}+4}$.
直线BM的方程为:y=$\frac{\frac{4k}{{k}^{2}+4}}{\frac{2{k}^{2}-8}{{k}^{2}+4}-2}$(x-2),化为y=-$\frac{k}{4}$(x-2),
令x=m,解得yP=$\frac{-k(m-2)}{4}$.
由-$\frac{1}{k}$y=x+2,令x=m,解得yP=k(m+2).
∴$\frac{-k(m-2)}{4}$=-k(m+2),k≠0.
解得m=$-\frac{10}{3}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、圆的性质、直线方程,考查了数形结合方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=x2e2x单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=lnx-f′(1)x2+2x-1,则f(1)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}中,a5、a7是函数f(x)=x2-4x+3的两个零点,则a3•a9等于(  )
A.-4B.-3C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将下列曲线的参数方程化为普通方程,并指明曲线的类型.
(1)$\left\{\begin{array}{l}{x=acosθ}\\{y=bsinθ}\end{array}\right.$ (θ为参数,a,b为常数,且a>b>0);
(2)$\left\{\begin{array}{l}{x=\frac{a}{cosφ}}\\{y=btanφ}\end{array}\right.$,(φ为参数,a,b为正常数);
(3)$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p为正常数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.中心在原点的椭圆C的一个顶点是圆E:x2+y2-4x+3=0的圆心,一个焦点是圆E与x轴其中的一个交点,则椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=2\sqrt{3}+sinα}\end{array}\right.$(α为参数).
(1)在直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(2)已知A(0,-2)、B(2,0),M为圆C上任意一点,求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.长、宽、高分別为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某省高中男生升高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16),现从该省某高校三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第六组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

同步练习册答案