精英家教网 > 高中数学 > 题目详情
8.生产一批零件,其质量按测试指标划分为:指标大于或等于8为优质品,小于8大于等于4为正品,小于4为次品,现随机抽取这种零件100件进行检测,检测结果统计如下:据以上述测试中各组的频率作为相应的概率.
测试指标[0,2)[2,4)[4,6)[6,8)[8,10)
 零件数 2 3238 20
(1)试估计这种零件的平均质量指标;
(2)生产一件零件,若是优质品可盈利40元,若是正品盈利20元,若是次品则亏损20元,若从大量的零件中随机抽取2件,其利润之和记为x(单位:元),求x的分布列及数学期望.

分析 (1)利用组中值,估计这种零件的平均质量指标;
(2)由题意知x的可能取值为80,60,40,20,-40,0,分别求出相应的概率,由此能求出x的分布列及数学期望.

解答 解:(1)这种零件的平均质量指标$\frac{1}{100}$[1×2+3×8+5×32+7×38+9×20]=6.32;
(2)优质品的概率为0.2,正品的概率为0.7,次品的概率为0.1,
x的取值为80,60,40,20,-40,0.
P(x=80)=0.2×0.2=0.04,P(x=60)=0.7×0.2×2=0.28,
P(x=40)=0.7×0.7=0.49.P(x=20)=0.2×0.1×2=0.04,
P(x=-40)=0.1×0.1=0.01,P(x=0)=0.7×0.1×2=0.14,
所以x的分布列为:

   x   80  60  40  20-40   0
   P  0.04  0.28  0.49  0.04  0.01  0.14
数学期望E(X)=80×0.04+60×0.28+40×0.49+20×0.04+(-40)×0.01+0×0.14=40.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是历年高考的必考题型,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.长、宽、高分別为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某省高中男生升高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16),现从该省某高校三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第六组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,若曲线y=2x2+$\frac{a}{x}$(a是常数)过点P(-1,-30),则函数y=2x2+$\frac{a}{x}$在区间[1,4]的最大值与最小值的和为64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆C上任意一点,当|PF1|-|PF2|取最大值时,|PF1|=3,|PF2|=1.
(1)求椭圆C的方程;
(2)设直线l与椭圆C、圆x2+y2=r2均相切,切点分别为M、N,当r在区间(b,a)内变化时,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cos(x-$\frac{2}{3}$π)+2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等差数列{an}中,a2=6,其前n项和为Sn.等比数列{bn}的各项均为正数,b1=1,且b2+S4=33,b3=S2
(1)求an与bn
(2)设数列{cn}的前n项和为Tn,且cn=4bn-a5,求使不等式Tn>S6成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知菱形ABCD的边长为为4,∠ABC=$\frac{π}{3}$,向其内部随机投放一点P,则点P与菱形各顶点距离均大于1的概率为(  )
A.1-$\frac{\sqrt{3}π}{24}$B.1-$\frac{\sqrt{3}π}{12}$C.$\frac{\sqrt{3}π}{24}$D.$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知各项均为正数的数列{an}的前n项和为Sn,$\sqrt{{S}_{n}+4}$是an与1的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{S}_{n}}{n+4}$•2${\;}^{{a}_{n}-3}$(n∈N*),记数列{bn}的前n项和为Tn,求使得Tn>2016成立的最小正整数n.

查看答案和解析>>

同步练习册答案