精英家教网 > 高中数学 > 题目详情
4.由曲线$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数)和y=x+2围成的封闭图形的面积为$\frac{9}{2}$.

分析 先消去参数t,可得曲线为y=x2,联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2与直线y=2+x围成的封闭图形的面积,即可求得结论.

解答 解:由曲线$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数),
可得曲线为y=x2,联立$\left\{\begin{array}{l}{y=x+2}\\{y={x}^{2}}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
∴曲线y=x2与直线y=2+x围成的封闭图形的面积为${∫}_{-1}^{2}$(x+2-x2)dx
=($\frac{1}{2}$x2+2x-$\frac{1}{3}$x3)|${\;}_{-1}^{2}$=($\frac{1}{2}$×4+4-$\frac{8}{3}$)-($\frac{1}{2}$-2+$\frac{1}{3}$)=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查参数方程和普通方程的互化,利用定积分求面积,解题的关键是确定被积区间及被积函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙、丁四位同学被问到是否游览过西岳华山时,回答如下:甲说:我没有去过;乙说:丙游览过;丙说:丁游览过;丁说:我没游览过.在以上的回答中只有一人回答正确且只有一人游览过华山.根据以上条件,可以判断游览过华山的人是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学有三个年级,各年级男、女生人数如表所示:
高一年级高二年级高三年级
女生370z200
男生380370300
已知在全校学生中随机抽取1名学生,抽到三年级男生的概率是0.15.
(Ⅰ)求z的值;
(Ⅱ)用水机抽样的方法从高一年级女生中选出8人,测量他们的体重,结果如下:52,56,60,61,55,62,58,59(单位:kg).把这8人的体重看作一个总体,从中任取一个数,求该数ξ样本平均数之差的绝对值不超过2的概率;
(Ⅲ)用分层抽样的方法在高三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求这2名学生均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面是平行四边形,E、F分别是AD、PC的中点,EF⊥BD,2AP=2AB=AD,∠BAD=60°.
(1)求证:BD⊥面APB;
(2)若AB=PB,求二面角C-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某中学成立A、B、C、D四个社团,每个社团最多招收团员6人,现有10位同学报名参加社团活动,每位同学只能参加一项,已知A社团一定有人参加,其他社团可能有人参加,也可能没人参加,则四个社团参加人数的不同的情况有多少种(  )
A.220B.200C.170D.173

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,底面为正三角形,点M在棱BB1上,AB=4,AA1=5,
平面A1MC⊥平面ACC1A1
(1)求证:M是棱BB1的中点;
(2)求平面A1MC与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图的平面多边形ACBEF中,四边形ABEF是矩形,点O为AB的中点,△ABC中,AC=BC,现沿着AB将△ABC折起,直至平面ABEF⊥平面ABC,如图,此时OE⊥FC.
(1)求证:OF⊥EC;
(2)若FC与平面ABC所成角为30°,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+n}{2}$,n∈N+
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$+(-1)nan,求数列{bn}的前n项和;
(3)设cn=an-8,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c是角A,B,C的对边,且cosB=$\frac{4}{5}$,b=2,设AC边的中线为BM,则BM的最大值为(  )
A.2B.3C.6D.9

查看答案和解析>>

同步练习册答案