精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c是角A,B,C的对边,且cosB=$\frac{4}{5}$,b=2,设AC边的中线为BM,则BM的最大值为(  )
A.2B.3C.6D.9

分析 设BM=m,∠AMB=α,分别在△ABM和△CBM中由余弦定理2m2=a2+c2-2,再由余弦定理可得b2=a2+c2-2accosB,代入数据由基本不等式可得.

解答 解:设BM=m,∠AMB=α,分别在△ABM和△CBM中,
由余弦定理可得c2=m2+1-2mcosα,a2=m2+1-2mcos(π-α),
∵cosα=-cos(π-α),∴两式相加并整理可得2m2=a2+c2-2,
又由余弦定理可得b2=a2+c2-2accosB,
代入数据可得a2+c2-$\frac{8}{5}$ac=4,即2ac=$\frac{5}{4}$(a2+c2-4),
∵2ac≤a2+c2,∴(a2+c2-4)≤a2+c2
整理可得a2+c2≤20,即2m2=a2+c2-2≤18,
解得0<m≤3,∴BM的最大值为3
故选:B

点评 本题考查三角形中的几何计算,涉及正余弦定理和基本不等式求最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.由曲线$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数)和y=x+2围成的封闭图形的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式组$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$,求$\sqrt{{m}^{2}+{n}^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=1,球心到该平面的距离是球半径的$\frac{\sqrt{3}}{2}$倍,则球的体积是$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个盒中有6个球,其中红球2个,黑球3个,白球1个,现从中任取3个球,用列举法求下列事件的概率:
(1)求取出3个球是不同颜色的概率.
(2)恰有两个黑球的概率.
(3)至少有一个黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx+f′(1)($\frac{1}{2}$x+1)-2.
(1)求f(x)的解析式;
(2)若k∈Z,且k<$\frac{f(x)}{x-1}$对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了治理污染,改善空气质量,市环境保护局决定每天在城区主要路段洒水防尘,为了给洒水车供水,供水部门决定最多修建3处供水站.根据过去30个月的资料显示,每月洒水量X(单位:百立方米)与气温和降雨量有关,且每月的洒水量都在20以上,其中不足40的月份有10个月,不低于40且不超过60的月份有15个月,超过60的月份有5个月.将月洒水量在以上三段的频率作为相应的概率,并假设各月的洒水量相互独立.
(Ⅰ)求未来的3个月中,至多有1个月的洒水量超过60的概率;
(Ⅱ)供水部门希望修建的供水站尽可能运行,但每月供水站运行的数量受月洒水量限制,有如下关系:
月洒水量20<X<4040≤X≤60X>60
供水站运行的最多数量123
若某供水站运行,月利润为12000元;若某供水站不运行,月亏损6000元.欲使供水站的月总利润的均值最大,应修建几处供水站?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD,AB∥DC,ADEF是正方形,已知BD=2AD=2,AB=2DC=$\sqrt{5}$.
(1)证明:平面BDF⊥平面ADEF;
(2)求二面角D-BE-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,某快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段;路段AC发生堵车事件的概率为$\frac{1}{6}$,路段CD发生堵车事件的概率为$\frac{1}{10}$).
(Ⅰ)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率较小;
(Ⅱ)若记路线A→E→F→B中遇到堵车路段的个数为ξ,求ξ的分布列及其数学期望E(ξ).

查看答案和解析>>

同步练习册答案