精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=xlnx+f′(1)($\frac{1}{2}$x+1)-2.
(1)求f(x)的解析式;
(2)若k∈Z,且k<$\frac{f(x)}{x-1}$对任意x>1恒成立,求k的最大值.

分析 (1)求出函数的导数.令x=1,求得f′(1)=2,即可得到所求f(x)的解析式;
(2)把函数f(x)的解析式代入k(x-1)<f(x),整理后得k<$\frac{xlnx+x}{x-1}$,问题转化为对任意x∈(1,+∞),k<$\frac{xlnx+x}{x-1}$恒成立,求正整数k的值.设函数g(x)=$\frac{xlnx+x}{x-1}$,求其导函数,得到其导函数的零点x0位于(3,4)内,且知此零点为函数g(x)的最小值点,经求解知g(x0)=x0,从而得到k<x0,则正整数k的最大值可求.

解答 解:(1)f(x)=xlnx+f′(1)($\frac{1}{2}$x+1)-2.
导数f′(x)=lnx+1+$\frac{1}{2}$f′(1),
令x=1,则f′(1)=lnx+1+$\frac{1}{2}$f′(1),
求得f′(1)=2,
则f(x)=xlnx+x;
(2)因为f(x)=x+xlnx,所以k(x-1)<f(x)对任意x>1恒成立,
即k(x-1)<x+xlnx,因为x>1,
也就是k<$\frac{xlnx+x}{x-1}$对任意x>1恒成立.
令g(x)=$\frac{xlnx+x}{x-1}$,则g′(x)=$\frac{x-lnx-2}{(x-1)^{2}}$,
令h(x)=x-lnx-2(x>1),则h′(x)=1-$\frac{1}{x}$,
所以函数h(x)在(1,+∞)上单调递增.
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,
所以函数g(x)=$\frac{xlnx+x}{x-1}$在(1,x0)上单调递减,在(x0,+∞)上单调递增.
所以[g(x)]min=g(x0)=$\frac{{x}_{0}(1+ln{x}_{0})}{{x}_{0}-1}$.
所以k<[g(x)]min=x0
因为x0∈(3,4).故整数k的最大值是3.

点评 本题考查了导数的运用:求单调区间,考查了数学转化思想,解答此题的关键是,在求解(2)时如何求解函数g(x)=$\frac{xlnx+x}{x-1}$的最小值,学生思考起来有一定难度.此题属于难度较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,底面为正三角形,点M在棱BB1上,AB=4,AA1=5,
平面A1MC⊥平面ACC1A1
(1)求证:M是棱BB1的中点;
(2)求平面A1MC与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点P(c,$\frac{3}{2}$c)在以F(c,0)为右焦点的椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,斜率为l的直线m过点F与椭圆Γ交于A,B两点,且与直线l:x=4c交于点M,求椭圆Γ的离心率e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P(2,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c是角A,B,C的对边,且cosB=$\frac{4}{5}$,b=2,设AC边的中线为BM,则BM的最大值为(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a、b的值;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2,g(x)=f(x)+2(x+1)+alnx.
(1)已知函数g(x)在区间(0,1)上单调递减,求实数a的取值范围;
(2)函数h(x)=ln(1+x2)-$\frac{1}{2}$f(x)-k,讨论关于x的方程h(x)=0根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克)

规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个.求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元.根据上表统计得到的甲、乙两种食品为一等品、二等品、劣质品,的频率分别估计这两种食品为,一等品、二等品、劣质品的概率.若分别从甲、乙食品中各抽取l件,设这两件食品给该厂带来的盈利为X,求随机变量X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从Po开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是(  )
A.$h(t)=-8sin\frac{π}{6}t+10$B.$h(t)=-8cos\frac{π}{6}t+10$C.$h(t)=-8sin\frac{π}{6}t+8$D.$h(t)=-8cos\frac{π}{6}t+8$

查看答案和解析>>

同步练习册答案