精英家教网 > 高中数学 > 题目详情
1.如图,某快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段;路段AC发生堵车事件的概率为$\frac{1}{6}$,路段CD发生堵车事件的概率为$\frac{1}{10}$).
(Ⅰ)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率较小;
(Ⅱ)若记路线A→E→F→B中遇到堵车路段的个数为ξ,求ξ的分布列及其数学期望E(ξ).

分析 (1)由对立事件概率计算公式,分别计算路线A→E→F→B途中堵车概率、路线A→C→D→B途中堵车概率,由此能求出选择路线路线A→E→F→B的途中发生堵车的概率最小.
(2)由题意,ξ可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的数学期望Eξ.

解答 解:(1)由已知得:路线A→E→F→B途中堵车概率为:1-$\frac{4}{5}×\frac{5}{6}×\frac{4}{5}$=$\frac{7}{15}$,
路线A→C→D→B途中堵车概率为:1-$\frac{5}{6}×\frac{9}{10}×\frac{3}{5}$=$\frac{11}{20}$,
所以选择路线路线A→E→F→B的途中发生堵车的概率最小;
由题意,ξ可能取值为0,1,2,3.
P(ξ=0)=$\frac{4}{5}×\frac{5}{6}×\frac{4}{5}$=$\frac{8}{25}$,
P(ξ=1)=$\frac{1}{5}×\frac{5}{6}×\frac{4}{5}+\frac{4}{5}×\frac{1}{6}×\frac{4}{5}+\frac{4}{5}×\frac{5}{6}×\frac{1}{5}$=$\frac{28}{75}$,
P(ξ=2)=$\frac{1}{5}×\frac{1}{6}×\frac{4}{5}+\frac{1}{5}×\frac{5}{6}×\frac{1}{5}+\frac{4}{5}×\frac{1}{6}×\frac{1}{5}$=$\frac{13}{150}$,
P(ξ=3)=$\frac{1}{5}×\frac{1}{6}×\frac{1}{5}$=$\frac{1}{150}$.
ξ的分布列为

 ξ 0 1 2 3
 P $\frac{8}{25}$ $\frac{28}{75}$ $\frac{13}{150}$ $\frac{1}{150}$
Eξ=0×$\frac{8}{25}$+1×$\frac{28}{75}$+2×$\frac{13}{150}$+3×$\frac{1}{150}$=$\frac{17}{30}$.

点评 本题考查概率的求法,考查离散型随机变量的数学期望的求法,考查学生的计算能力,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c是角A,B,C的对边,且cosB=$\frac{4}{5}$,b=2,设AC边的中线为BM,则BM的最大值为(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设A,B分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点和上顶点,椭圆的长轴为4,且点(1,$\frac{3}{2}$)在椭圆上,斜率为$\frac{\sqrt{3}}{2}$的直线l交椭圆C于P,Q两点(A,B位于直线l的两侧).
(1)求椭圆的方程;
(2)求四边形APBQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.
(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角的正弦值为$\frac{1}{2}$,求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从0,1,2,3,4这5个数中取3个数,2恰好是中位数的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从Po开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是(  )
A.$h(t)=-8sin\frac{π}{6}t+10$B.$h(t)=-8cos\frac{π}{6}t+10$C.$h(t)=-8sin\frac{π}{6}t+8$D.$h(t)=-8cos\frac{π}{6}t+8$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,正视图,侧视图,俯视图都是边长为1的正方形,则此几何体的外接球和内接球的半径分别为(  )
A.$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{6}}{4}$,$\frac{\sqrt{6}}{12}$D.$\frac{\sqrt{6}}{4}$,$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=ax+1的反函数经过(3,1),则f(2)=(  )
A.1B.3C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.想一想函数y=sin(x-$\frac{3π}{2}$)和y=cosx的图象,并在同一直角坐标系中,画出它们的草图.

查看答案和解析>>

同步练习册答案