精英家教网 > 高中数学 > 题目详情
7.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$都是单位向量,且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow{c}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=$\frac{1}{2}$.设$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则θ=$\frac{2π}{3}$.

分析 运用两边平方,结合向量的平方即为模的平方,可得向量a,b的数量积,代入化简可得向量a,c的数量积;再由向量的夹角公式得到所求夹角.

解答 解:由$\overrightarrow a,\overrightarrow b,\overrightarrow c$都是单位向量,且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow{c}$,
平方可得,$\overrightarrow{a}$2+$\overrightarrow{b}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{c}$2
即有1+1+2$\overrightarrow{a}$•$\overrightarrow{b}$=1,
即为$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,
则$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=1-$\frac{1}{2}$=$\frac{1}{2}$;
cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-\frac{1}{2}}{1×1}$=-$\frac{1}{2}$,
由0≤θ≤π,可得θ=$\frac{2π}{3}$.
故答案为:$\frac{1}{2}$,$\frac{2π}{3}$.

点评 本题考查向量的数量积的定义和性质,考查向量的夹角的求法,注意运用向量数量积的性质:向量的平方即为模的平方,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=2,AC=3,$BC=\sqrt{10}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\sqrt{15}$C.$\frac{{3\sqrt{15}}}{4}$D.$\frac{{3\sqrt{6}}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\sqrt{{x^2}-2x-8}$的定义域为A,函数$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定义域为B,则使A∩B=∅的实数a的取值范围是(  )
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知关于x的方程x2+ax+2b+1=0的两个实根分别为x1、x2,且-1<x1<1<x2<2,则$\frac{b-1}{a-1}$的取值范围是($\frac{1}{8}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$若关于x的函数y=f2(x)-bf(x)+1有8个不同的零点,则实数b的取值范围是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.AB是圆O的直径,点C,D在圆上,且AB=4,∠AOC=∠A0D=120°,点E,F分别在线段上,且$\overrightarrow{OE}$=λ$\overrightarrow{OC}$,$\overrightarrow{OF}$=2λ$\overrightarrow{OD}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最大值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{15}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若关于x的不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则a的取值范围是[-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$,$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CD}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{EF}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,∠DAB=60°,分别求|$\overrightarrow{EF}$|和$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆(x+1)2+y2=16的圆心为B及点A(1,0),点C为圆上任意一点,求线段AC的垂直平分线l与线段CB的交点P的轨迹方程.

查看答案和解析>>

同步练习册答案