精英家教网 > 高中数学 > 题目详情
12.AB是圆O的直径,点C,D在圆上,且AB=4,∠AOC=∠A0D=120°,点E,F分别在线段上,且$\overrightarrow{OE}$=λ$\overrightarrow{OC}$,$\overrightarrow{OF}$=2λ$\overrightarrow{OD}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最大值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{15}{4}$D.$\frac{15}{4}$

分析 设圆O的方程为x2+y2=4,A(2,0),B(-2,0),C(-1,$\sqrt{3}$),D(-1,-$\sqrt{3}$),由条件可得E,F的坐标,求得向量AE,BF的坐标,运用向量的数量积的坐标表示,结合二次函数的最值的求法,即可得到所求最大值.

解答 解:如图设圆O的方程为x2+y2=4,
A(2,0),B(-2,0),C(-1,$\sqrt{3}$),D(-1,-$\sqrt{3}$),
由$\overrightarrow{OE}$=λ$\overrightarrow{OC}$,$\overrightarrow{OF}$=2λ$\overrightarrow{OD}$,可得
E(-λ,$\sqrt{3}$λ),F(-2λ,-2$\sqrt{3}$λ),
则$\overrightarrow{AE}$•$\overrightarrow{BF}$=(-λ-2,$\sqrt{3}$λ)•(-2λ+2,-2$\sqrt{3}$λ),
=(λ+2)(2λ-2)-6λ2=-4λ2+2λ-4
=-4(λ-$\frac{1}{4}$)2-$\frac{15}{4}$,
由0≤λ≤1,且0≤2λ≤1,
可得0≤λ≤$\frac{1}{2}$,
当λ=$\frac{1}{4}$时,$\overrightarrow{AE}$•$\overrightarrow{BF}$的最大值为-$\frac{15}{4}$.
故选C.

点评 本题考查向量的数量积的最大值的求法,注意运用坐标法,考查向量的数量积的坐标表示和二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{{\begin{array}{l}{-\frac{8}{x}\;,x>0}\\{x(x-2)\;,x<0}\end{array}}$,则f[f(2)]等于(  )
A.-4B.0C.24D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设O为△ABC内任一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0.
(1)若D,E分别是BC,CA的中点,求证:D,E,O共线;
(2)求△ABC与△AOC的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.积分${∫}_{3}^{4}$lnxdx和${∫}_{3}^{4}$ln2xdx的大小关系是${∫}_{3}^{4}$lnxdx<${∫}_{3}^{4}$ln2xdx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$都是单位向量,且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow{c}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=$\frac{1}{2}$.设$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,则θ=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=(x-1)(x-2)2在区间[0,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.集合A={x||x-1|<1},B={x|$\frac{2}{x-1}$≥1},C={x|2x2+mx-1<0},若“x∈A∩B”是“x∈C”的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(2+$\frac{1}{x}$)=log4x,则f(4)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正方形的中心为直线2x-y-2=0和x+y+1=0的交点,正方形一边所在直线的方程为x+3y-5=0,求其它三边所在的直线方程.

查看答案和解析>>

同步练习册答案