精英家教网 > 高中数学 > 题目详情
3.设O为△ABC内任一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0.
(1)若D,E分别是BC,CA的中点,求证:D,E,O共线;
(2)求△ABC与△AOC的面积之比.

分析 (1)分别用$\overrightarrow{OA}$,$\overrightarrow{OB}$来表示$\overrightarrow{DE}$,$\overrightarrow{OD}$,证明$\overrightarrow{DE},\overrightarrow{OD}$存在倍数关系即可;
(2)作出平面图形,根据平面向量的加法法则推出两个三角形高的关系.

解答 解:(1)∵$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0,∴$\overrightarrow{OC}$=-$\frac{1}{3}$($\overrightarrow{OA}$+2$\overrightarrow{OB}$)=-$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{2}{3}\overrightarrow{OB}$,
∵D是BC中点,∴$\overrightarrow{OD}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)=$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$=$\frac{1}{6}$$\overrightarrow{OB}$-$\frac{1}{6}$$\overrightarrow{OA}$,
$\overrightarrow{DE}$=$\frac{1}{2}\overrightarrow{BA}$=$\frac{1}{2}$($\overrightarrow{OA}-\overrightarrow{OB}$),
∴$\overrightarrow{DE}$=-3$\overrightarrow{OD}$,∴D,E,O共线.
(2)延长OC至M点,使得OM=3OC,以OA,OM为邻边作平行四边形OANM,
则$\overrightarrow{OA}+3\overrightarrow{OC}$=$\overrightarrow{ON}$,∵$\overrightarrow{OA}$+3$\overrightarrow{OC}$=-2$\overrightarrow{OB}$,
∴$\overrightarrow{ON}$=-2$\overrightarrow{OB}$,
∵OM=3OC,∴ON=4OP,
∴OP=$\frac{1}{2}OB$=$\frac{1}{3}$BP,
∴$\frac{{S}_{△ABC}}{{S}_{△AOC}}$=$\frac{BP}{OP}$=3.

点评 本题考查了平面向量线性运算的性质,正确画出图形并找到线段的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{x+1}$+lg(2-x)的定义域为A,g(x)=-x2+1的值域为B.设全集U=R.
(1)求集合A,B;
(2)求A∩(∁UB).
(3)已知C={x|a≤x≤a+2},若B∩C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,b=3,c=4,B=30°,则此三角形解的情况是(  )
A.一解B.两解C.一解或两解D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.则(  )
A.$f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$B.f(0.76)<f(60.5)<f(log0.76)
C.$f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$D.$f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\sqrt{{x^2}-2x-8}$的定义域为A,函数$g(x)=\frac{1}{{\sqrt{1-|{x-a}|}}}$的定义域为B,则使A∩B=∅的实数a的取值范围是(  )
A.{a|-1<a<3}B.{a|-2<a<4}C.{a|-2≤a≤4}D.{a|-1≤a≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,自点M(1,0)引直线交椭圆$\frac{{x}^{2}}{4}$+y2=1于A,B两点,直线l:x=4与x轴交于点N,设点A关于x轴的对称点为P(异于点B).
(1)求证:P、B、N三点共线;
(2)过点A作PB的平行线交直线l:x=4于点Q,记△AQM、△QMN、△BMN的面积分别为S1、S2、S3,是否存在常数λ,使得S22=λS1S3?若存在,请求出λ的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知关于x的方程x2+ax+2b+1=0的两个实根分别为x1、x2,且-1<x1<1<x2<2,则$\frac{b-1}{a-1}$的取值范围是($\frac{1}{8}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.AB是圆O的直径,点C,D在圆上,且AB=4,∠AOC=∠A0D=120°,点E,F分别在线段上,且$\overrightarrow{OE}$=λ$\overrightarrow{OC}$,$\overrightarrow{OF}$=2λ$\overrightarrow{OD}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最大值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{15}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P(x,y)满足平面区域:$\left\{\begin{array}{l}{cosθ≤x≤3cosθ}\\{sinθ≤y≤3sinθ}\end{array}\right.$(θ∈R),点M(x,y)满足:(x+5)2+(y+5)2=1,则|$\overrightarrow{PM}$|的最小值是(  )
A.5$\sqrt{2}$B.4$\sqrt{2}$-1C.6$\sqrt{2}$-1D.$\sqrt{61}$-1

查看答案和解析>>

同步练习册答案