精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\sqrt{x+1}$+lg(2-x)的定义域为A,g(x)=-x2+1的值域为B.设全集U=R.
(1)求集合A,B;
(2)求A∩(∁UB).
(3)已知C={x|a≤x≤a+2},若B∩C=C,求a的取值范围.

分析 (1)求出f(x)的定义域确定出A,求出g(x)的值域确定出B即可;
(2)根据全集R,求出B的补集,找出A与B补集的交集即可;
(3)根据B∩C=C?C⊆B,即可求出a的取值范围.

解答 解:(1)∵$\left\{\begin{array}{l}{x+1≥0}\\{2-x>0}\end{array}\right.$,解得-1≤x<2,
∴A=[-1,2),
∵g(x)=-x2+1的值域为B,
∴B=(-∞,1]
(2)CUB=(1,+∞),
∴A∩(∁UB)=(1,2),
(3)∵B∩C=C?C⊆B,
∴a+2≤1,
∴a∈(-∞,-1].

点评 此题考查了交、并、补集的混合运算,函数的定义域与值域参数的取值范围,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(2x+$\frac{π}{3}$)(x∈R)
(1)求f(x)的最小正周期、单调增区间、对称轴和对称中心;
(2)该函数图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)=-x2+4x-3,那么不等式f(x)cosx<0的解集是(  )
A.$(-3,-\frac{π}{2})∪(0,1)∪(\frac{π}{2},3)$B.$(-\frac{π}{2},-1)∪(0,1)∪(\frac{π}{2},3)$C.(-3,-1)∪(0,1)∪(1,3)D.$(-3,-\frac{π}{2})∪(0,1)∪(1,3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设(  )
A.x>0或y>0B.x>0且y>0C.xy>0D.x+y<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)={log_2}({1+x})+{({1-x})^{\frac{1}{2}}}$的定义域是(  )
A.(-1,0)B.(-1,1]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+1}$(x≥-1)的反函数为y=x2-1(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,正方体的棱长为1,C B′∩BC′=O,求:
(1)AO与A′C′所成角的度数;
(2)AO与平面ABCD所成角的正切值;
(3)证明平面AOB与平面AOC垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{{\begin{array}{l}{-\frac{8}{x}\;,x>0}\\{x(x-2)\;,x<0}\end{array}}$,则f[f(2)]等于(  )
A.-4B.0C.24D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设O为△ABC内任一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=0.
(1)若D,E分别是BC,CA的中点,求证:D,E,O共线;
(2)求△ABC与△AOC的面积之比.

查看答案和解析>>

同步练习册答案