精英家教网 > 高中数学 > 题目详情
2.$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=tan2α.

分析 利用二倍角公式以及弦切互化,求解即可.

解答 解:$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=$\frac{2sin2α}{1+2{cos}^{2}α-1}•\frac{co{s}^{2}α}{cos2α}$=tan2α.
故答案为:tan2α.

点评 本题考查三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},}&{x≥a}\\{-{x}^{2},}&{x<a}\end{array}\right.$,a∈R,若存在实数b,使函数g(x)=f(x)-b有两个零点,则实数a的取值范围为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足对任意x∈R都有f(x)+f(-x)=0,且在(-∞,0]上的图象如图所示,则关于x的不等式$\frac{f(x)-f(-x)}{x}$<0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°
(I)求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(Ⅱ)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果关于x的不等式x2-(a-1)x+1<0的解集为∅,则实数a的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三棱锥C-ABD中,△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,AB=4,二面角A-BD-C的大小为$\frac{π}{6}$并给出下面结论:
(1)AC⊥BD;  (2)AD⊥CO;  (3)△AOC为正三角形; (4)cos∠ADC=$\frac{3}{4}$;
(5)四面体ABCD的外接球表面积为32π,
其中真命题个数是(1)(5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.下列说法正确的有:①③.(写出所有正确说法的序号)
①对给定的函数f(x),对承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x),不存在承托函数;
③g(x)=ex为函数f(x)=ex的一个承托函数;
④函数f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:对任意x∈R,总有|x|≥0;命题q:x=2是方程x+2=0的根.则下列命题为真命题的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则这个几何体外接球的体积为(  )
A.1000$\sqrt{2}$πB.200πC.$\frac{200}{3}$πD.$\frac{1000\sqrt{2}}{3}$π

查看答案和解析>>

同步练习册答案