精英家教网 > 高中数学 > 题目详情
14.定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.下列说法正确的有:①③.(写出所有正确说法的序号)
①对给定的函数f(x),对承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x),不存在承托函数;
③g(x)=ex为函数f(x)=ex的一个承托函数;
④函数f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函数.

分析 函数g(x)=Ax+B(A,B为常数)是函数f(x)的一个承托函数,即说明函数f(x)的图象恒在函数g(x)的上方(至多有一个交点)①举例可以说明,如f(x)=sinx,则g(x)=B(B<-1)就是它的一个承托函数,且有无数个,反例如y=tanx或y=lgx就没有承托函数.
②如取f(x)=2x+3,即可看出其不符合,故错.
③要说明g(x)=ex为函数f(x)=ex的一个承托函数,即证明F(x)=ex-2x的图象恒在x轴上方.
④先求函数的值域,从而可知函数有无数个承托函数.

解答 解:①如f(x)=sinx,则g(x)=B(B<-1)就是它的一个承托函数,且有无数个,再如y=tanx.y=lgx就没有承托函数,∴命题①正确;
②f(x)=2x+3的定义域和值域都是R,存在一个承托函数y=2x+1,故命题②不正确;
③令F(x)=ex-ex,F′(x)=ex-e=0,得x=1,
当x<1时,F′(x)<0,F(x)单调递减,
当x>1时,F′(x)>0,F(x)单调递增,
∴当x=1时,F(x)取最小值=0,
∴f(x)≥g(x)对一切实数x都成立
∴③正确;
④设函数$f(x)=\frac{x}{{x}^{2}+x+1}$=y,则yx2+(y-1)x+y=0
若y=0,则x=0,成立
若y≠0,则△≥0,即(y-1)2-4y2≥0且y≠0,
∴(3y-1)(y+1)≤0且y≠0,
∴-1≤y<0或$0<y≤\frac{1}{3}$
综上知,$-1≤y≤\frac{1}{3}$
∴y=A(A≤-1)就是它的一个承托函数,且有无数个;
∴命题④不正确;
故答案为:①③

点评 本题是新定义题,考查对题意的理解和转化的能力,要说明一个命题是正确的,必须给出证明,对于存在性命题的探讨,只需举例说明即可,对于不正确的命题,举反例即可,有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求证:2(1+cosα)-sin2α=4cos4$\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinαcosα=$\frac{1}{8}$,且$\frac{π}{4}$<$α<\frac{π}{2}$,则sinα-cosα的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=tan2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cos2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,与函数y=sin(2x-$\frac{π}{6}$)的图象重合,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一次考试中,5名同学数学、物理成绩如表所示:
学生ABCDE
数学(分)8991939597
物理(分)8789899293
(1)根据表中数据,求物理分y队数学分x的回归方程;
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,求选中的同学中物理成绩高于90分的恰有1人的概率.
(附:回归方程$\widehat{y}$=bx+$\widehat{a}$中,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线f(x)=$\sqrt{x}$+$\frac{4}{x}$+1在(1,6)处的切线经过过点A(-1,y1),B(3,y2),则y1与y2的等差中项为(  )
A.-6B.-4C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.当m=7时,执行如图所示的程序框图,输出的S值为(  )
A.7B.42C.210D.840

查看答案和解析>>

同步练习册答案