精英家教网 > 高中数学 > 题目详情
6.将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律可得所得图象对应的函数的解析式,再根据正弦函数、余弦函数的奇偶性,求得m的最小值.

解答 解:将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)-$\frac{π}{6}$]=2sin(2x+2m-$\frac{π}{6}$)的图象;
根据所得图象对应的函数为偶函数,则2m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,即 m=$\frac{kπ}{2}$+$\frac{π}{3}$,
则m的最小值为$\frac{π}{3}$,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知R上的偶函数f(x)在[0,+∞)上是单调减函数,若f(1)>f(log2$\frac{1}{x}$),则x的取值范围为[2,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果关于x的不等式x2-(a-1)x+1<0的解集为∅,则实数a的取值范围是(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.下列说法正确的有:①③.(写出所有正确说法的序号)
①对给定的函数f(x),对承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x),不存在承托函数;
③g(x)=ex为函数f(x)=ex的一个承托函数;
④函数f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线a∥b,b∩c=A,则a与c的位置关系是(  )
A.异面B.相交C.平行D.异面或相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:对任意x∈R,总有|x|≥0;命题q:x=2是方程x+2=0的根.则下列命题为真命题的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,a3+a4+a5+a6+a7=50,则lga5=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinxcos2$\frac{α}{2}$+$\frac{1}{2}$cosxsinα-$\frac{1}{2}$sinx(0<α<π)在x=π时有最小值-$\frac{1}{2}$.
(1)求α的值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=1,b=$\sqrt{3}$,f(A)=$\frac{\sqrt{3}}{4}$,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos40°sin20°+sin140°cos20°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案