精英家教网 > 高中数学 > 题目详情
1.若直线a∥b,b∩c=A,则a与c的位置关系是(  )
A.异面B.相交C.平行D.异面或相交

分析 以正方体为载体,列举各种可能发生的情况,能求出结果.

解答 解:在正方体ABCD-A1B1C1D1中,
AB∥DC,AB∩AD=D,DC与AD相交,
AB∥DC,AB∩AA1=A,DC与AA1异面,
∴直线a∥b,b∩c=A,则a与c的位置关系相交或异面.
故选:D.

点评 本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.f(x)=ax2-x+2有两个零点,则a的取值范围是(-∞,0)∪(0,$\frac{1}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,点P在直线BC上,点Q在△ABC所在的平面内运动,且满足$\overrightarrow{PQ}$=$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,则点Q的运动轨迹是过点A平行于BC的一条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cos2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,与函数y=sin(2x-$\frac{π}{6}$)的图象重合,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+log3$\frac{5}{4}$+log3$\frac{4}{5}$=$\frac{27}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2+2x-4y+3=0.
(1)在x轴、y轴上截距相等的直线l不过原点且与圆C相切,求直线l的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且MP=OP,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列四个判断:
①$f(x)=\frac{1}{x}$在定义域上单调递减;
②函数f(x)=2x-x2恰有两个零点;
③函数$y={(\frac{1}{2})^{|x|}}$有最大值1;
④若奇函数f(x)满足x<0时,f(x)=x2+x,则x>0时,f(x)=-x2+x.
其中正确的序号是③④.

查看答案和解析>>

同步练习册答案