精英家教网 > 高中数学 > 题目详情
4.当m=7时,执行如图所示的程序框图,输出的S值为(  )
A.7B.42C.210D.840

分析 该算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,即可得出输出S的值.

解答 解:由程序框图知:该算法的功能是求S=7×6×…×k的值,
当m=7时,k=5-1=4,
即跳出循环的k值为4,
∴输出的S=7×6×5=210.
故选:C.

点评 本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.下列说法正确的有:①③.(写出所有正确说法的序号)
①对给定的函数f(x),对承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x),不存在承托函数;
③g(x)=ex为函数f(x)=ex的一个承托函数;
④函数f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinxcos2$\frac{α}{2}$+$\frac{1}{2}$cosxsinα-$\frac{1}{2}$sinx(0<α<π)在x=π时有最小值-$\frac{1}{2}$.
(1)求α的值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=1,b=$\sqrt{3}$,f(A)=$\frac{\sqrt{3}}{4}$,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则这个几何体外接球的体积为(  )
A.1000$\sqrt{2}$πB.200πC.$\frac{200}{3}$πD.$\frac{1000\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$sinθ-cosθ=-\frac{1}{5}$
(1)求sinθcosθ的值.
(2)求sin3θ-cos3θ的值.
(3)当-π<θ<0时,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx+cosx,则下列结论正确的是(  )
A.函数f(x)的图象关于直线$x=-\frac{π}{4}$对称B.函数f(x)的最大值为2
C.函数f(x)在区间$(-\frac{π}{4},\frac{π}{4})$上是增函数D.函数f(x)的最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos40°sin20°+sin140°cos20°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sinxcosx+1-2cos2(x-$\frac{π}{12}$),(x∈R),则下列结论正确的是(  )
A.周期T=2πB.f(x)向左平移$\frac{π}{6}$后是奇函数
C.一个对称中心是($\frac{π}{3}$,0)D.一条对称轴是x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$cosA=\frac{2}{3},sinB=\sqrt{5}cosC$.
(1)求tanC的值;
(2)若$a=\sqrt{2}$,求边c的长及△ABC的面积.

查看答案和解析>>

同步练习册答案