精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=sinx+cosx,则下列结论正确的是(  )
A.函数f(x)的图象关于直线$x=-\frac{π}{4}$对称B.函数f(x)的最大值为2
C.函数f(x)在区间$(-\frac{π}{4},\frac{π}{4})$上是增函数D.函数f(x)的最小正周期为π

分析 由条件利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性、单调性、最值、以及它的图象的对称性,得出结论.

解答 解:函数f(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),当x=-$\frac{π}{4}$时,求得f(x)=0,
可得函数f(x)的图象不关于直线$x=-\frac{π}{4}$对称,故排除A.
由函数的解析式可得函数f(x)的最大值为$\sqrt{2}$,故排除B.
∵x∈区间$(-\frac{π}{4},\frac{π}{4})$,故x+$\frac{π}{4}$∈(0,$\frac{π}{2}$),故函数f(x)在区间$(-\frac{π}{4},\frac{π}{4})$上是增函数,
故C正确.
根据f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),可得它的最小正周期为2π,故排除D,
故选:C.

点评 本题主要考查两角和的正弦公式,正弦函数的周期性、单调性、最值、以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在一次考试中,5名同学数学、物理成绩如表所示:
学生ABCDE
数学(分)8991939597
物理(分)8789899293
(1)根据表中数据,求物理分y队数学分x的回归方程;
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,求选中的同学中物理成绩高于90分的恰有1人的概率.
(附:回归方程$\widehat{y}$=bx+$\widehat{a}$中,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算[(-2)-2]${\;}^{\frac{1}{2}}$的结果是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数$f(x)=2cos(\frac{π}{3}-\frac{x}{2})$,
(1)求f(x)的周期;
(2)当x∈[-π,π]时,求f(x)单调递增区间;
(3)当x∈[0,2π]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.当m=7时,执行如图所示的程序框图,输出的S值为(  )
A.7B.42C.210D.840

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a1+b2=3,a2+b3=7
(Ⅰ)求{an},{bn}的通项公式;        
(Ⅱ)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,角A、B、C所对应的边为a,b,c.
(I)若sin(A+$\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$cosA,求A的值;
(Ⅱ)若cosA=$\frac{1}{3}$,b=3c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a+bi=$\frac{5}{1+2i}$(i是虚数单位,a,b∈R),则ab=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一长方体的长,宽,高分别为3$\sqrt{2}$cm,4$\sqrt{2}$cm,5$\sqrt{2}$cm,则该长方体的外接球的体积是(  )
A.$\frac{100π}{3}$cm3B.$\frac{208π}{3}$cm3C.$\frac{500π}{3}$cm3D.$\frac{416\sqrt{3}π}{3}$cm3

查看答案和解析>>

同步练习册答案