精英家教网 > 高中数学 > 题目详情
20.计算[(-2)-2]${\;}^{\frac{1}{2}}$的结果是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 直接利用有理指数幂的运算法则化简求解即可.

解答 解:[(-2)-2]${\;}^{\frac{1}{2}}$=(2-2)${\;}^{\frac{1}{2}}$=$\frac{1}{2}$.
故选:C.

点评 本题考查有理指数幂的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.己知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°
(I)求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(Ⅱ)求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:对任意x∈R,总有|x|≥0;命题q:x=2是方程x+2=0的根.则下列命题为真命题的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a∩b=P,a∥平面α,则b与α的位置关系是相交或平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinxcos2$\frac{α}{2}$+$\frac{1}{2}$cosxsinα-$\frac{1}{2}$sinx(0<α<π)在x=π时有最小值-$\frac{1}{2}$.
(1)求α的值;
(2)在△ABC中,a,b,c分别是角A,B,C所对的边,已知a=1,b=$\sqrt{3}$,f(A)=$\frac{\sqrt{3}}{4}$,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=({{m^2}-m-1}){x^{{m^2}+m-3}}$是定义域为R的幂函数,且当x∈(0,+∞)时,f(x)是增函数,
(1)求m的值,并写出f(x)得解析式.
(2)若f(a)≤8,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则这个几何体外接球的体积为(  )
A.1000$\sqrt{2}$πB.200πC.$\frac{200}{3}$πD.$\frac{1000\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx+cosx,则下列结论正确的是(  )
A.函数f(x)的图象关于直线$x=-\frac{π}{4}$对称B.函数f(x)的最大值为2
C.函数f(x)在区间$(-\frac{π}{4},\frac{π}{4})$上是增函数D.函数f(x)的最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某小组共有8名同学,其中男生6人,女生2人,现从中按性别用分层抽样方法从中抽取4人参加社区志愿者服务,则男生抽取3人;女生抽取1人.

查看答案和解析>>

同步练习册答案